Iberian Leuciscinae have been used in many studies as models to explore topics such as hybridization, allopolyploidy, modes of reproduction, and evolution. This article focuses on the contribution of cytogenomics to foster research in this group of cyprinid fish. Conventional and molecular banding results were reviewed, facilitating comparative analysis between nase and chub taxa inhabiting Portuguese freshwaters. Hybridization is known to occur within both Chondrostoma s.l. and Squalius genera although polyploidy has only been reported in the latter; the reasons behind such differential genome flexibility remain unidentified. FISH tools allowed recognizing additional chromosome markers, confirming NOR polymorphism and distinguishing species and their hybrids. Recombination and genome instability were detected in homoploid and polyploid hybrid genomes supporting active NOR transposition. However, the multiplication of rDNAs in these species does not seem to be associated with Rex3 retroelement, though hybrids were not surveyed. CGH and GISH allowed reaffirming the hybrid origin of S. alburnoides and confirming that the conservative karyotype patterns within Iberian leuciscines are restricted to the macrostructure. Current data also support the usefulness of mapping repetitive DNAs, especially for nonmodel compact genomes with less variable karyotypes and sequence data resources unavailable, like in many cyprinid lineages.

1.
Aboim MA, Mavárez J, Bernatchez L, Coelho MM: Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones. J Evol Biol 23:817-828 (2010).
2.
Arai R: Fish Karyotypes - A Check List (Springer, Tokyo 2011).
3.
Bi K, Bogart JP: Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res 112:307-312 (2006).
4.
Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff J-N: Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res 16:203-215 (2008).
5.
Borón A, Porycka K, Ito D, Abe S, Kirtiklis L: Comparative molecular cytogenetic analysis of three Leuciscus species (Pisces, Cyprinidae) using chromosome banding and FISH with rDNA. Genetica 135:199-207 (2009).
6.
Brenna-Hansen S, Li J, Kent MP, Boulding EG, Dominik S, et al: Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis. BMC Genomics 13:432 (2012).
7.
Cioffi MB, Bertollo LAC: Chromosomal distribution and evolution of repetitive DNAs in fish, in Garrido-Ramos M (ed): Repetitive DNA. Genome Dyn 7:197-221 (2012).
8.
Claussen U: Chromosomics. Cytogenetic Genome Res 111:101-106 (2005).
9.
Collares-Pereira MJ: Cytotaxonomic studies in Iberian Cyprinids II. Karyology of Anaecypris hispanica (Steindachner, 1866), Chondrostoma lemmingi (Steindachner, 1866), Rutilus arcasi (Steindachner, 1866) and R. macrolepidotus (Steindachner, 1866). Cytologia 50:879-890 (1985).
10.
Collares-Pereira MJ, Coelho MM: Biometrical analysis of Chondrostoma polylepis × Rutilus arcasi natural hybrids (Osteichthyes-Cypriniformes-Cyprinidae). J Fish Biol 23:495-509 (1983).
11.
Collares-Pereira MJ, Coelho MM: Reconfirming the hybrid origin and generic status of the Iberian cyprinid complex Squalius alburnoides. J Fish Biol 76:707-715 (2010).
12.
Collares-Pereira MJ, Ráb P: NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae) - re-examination by FISH. Genetica 105:301-303 (1999).
13.
Collares-Pereira MJ, Próspero MI, Biléu RI, Rodrigues EM: Leuciscus (Pisces, Cyprinidae) karyotypes: transect of Portuguese populations. Genet Mol Biol 21:1-12 (1998).
14.
Collares-Pereira MJ, Matos I, Morgado-Santos M, Coelho MM: Natural pathways towards polyploidy in animals - the Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids, in Stöck M, Lamatsch DK (eds): Trends in Polyploidy Research in Animals and Plants. Cytogenet Genome Res 140:97-116 (2013).
15.
Coyne JA, Orr HA: Speciation (Sinauer Associates, Sunderland 2004).
16.
Deakin JE, Graves JAM, Rens W: The evolution of marsupial and monotreme chromosomes. Cytogenet Genome Res 137:113-129 (2012).
17.
Dobigny G, Yang F: Foreword. Comparative cytogenetics in the genomics era: cytogenomics comes of age. Chromosome Res 16:1-4 (2008).
18.
Elvira B, Rincón PA, Velasco JC: Chondrostoma polylepis Steindachner × Rutilus lemmingii (Steindachner) (Osteichthyes, Cyprinidae), a new natural hybrid from the Duero River basin, Spain. J Fish Biol 37:745-754 (1990).
19.
Esmaeili HR, Zareian H, Gholamhosseini A, Ebrahimi M, Gholami Z, et al: Karyotype analysis of the king nase fish, Chondrostoma regium (Heckel, 1843) (Actinopterygii: Cyprinidae) from Iran. Turk J Fish Aquatic Sci 10:477-481 (2010).
20.
Filipe AF, Araújo MB, Doadrio I, Angermeier PL, Collares-Pereira MJ: Biogeography of Iberian freshwater fishes revisited: the roles of historical versus contemporary constraints. J Biogeogr 36:2096-2110 (2009).
21.
Fontdevila A: Hybrid genome evolution by transposition. Cytogenet Genome Res 110:49-55 (2005).
22.
Freeman JL, Adeniyi A, Banerjee R, Dallaire S, Maguire SF, et al: Definition of the zebrafish genome using flow cytometry and cytogenetic mapping. BMC Genomics 8:195 (2007).
23.
Fujiwara A, Abe S, Yamaha E, Yamazaki F, Yoshida MC: Uniparental chromosome elimination in the early embryogenesis of the inviable salmonid hybrids between masu salmon female and rainbow trout male. Chromosoma 106:44-52 (1997).
24.
Fujiwara A, Nishida-Umehara C, Sakamoto T, Okamoto N, Nakayama I, Abe S: Improved fish lymphocyte culture for chromosome preparation. Genetica 111:77-89 (2001).
25.
Gante HF, Collares-Pereira MJ, Coelho MM: Introgressive hybridisation between two Iberian Chondrostoma species (Teleostei, Cyprinidae) revisited: new evidence from morphology, mitochondrial DNA, allozymes and NOR-phenotypes. Folia Zool 53:423-432 (2004).
26.
Gold JR, Li YC, Shipley NS, Powers PK: Improved methods for working with fish chromosomes with a review of metaphase chromosome banding. J Fish Biol 37:563-575 (1990).
27.
Graphodatsky AS, Ferguson-Smith MA, Stanyon R: A short introduction to cytogenetic studies in mammals with reference to the present volume. Cytogenet Genome Res 137:83-96 (2012).
28.
Griffin DK, Robertson LBW, Tempest HG, Skinner BM: The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet Genome Res 117:64-77 (2007).
29.
Gromicho M, Collares-Pereira MJ: Polymorphism of major ribosomal gene chromosomal sites (NOR-phenotypes) in the hybridogenetic fish Squalius alburnoides complex (Cyprinidae) assessed through crossing experiments. Genetica 122:291-302 (2004).
30.
Gromicho M, Collares-Pereira MJ: The evolutionary role of hybridization and polyploidy in an Iberian cyprinid fish - a cytogenetic review, in Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds): Fish Cytogenetics, pp 41-67 (Science Publishers, Inc., Enfield 2007).
31.
Gromicho M, Ozouf-Costaz C, Collares-Pereira MJ: Lack of correspondence between CMA3-, Ag-positive signals and 28S rDNA loci in two Iberian minnows (Teleostei, Cyprinidae) evidenced by sequential banding. Cytogenet Genome Res 109:507-511 (2005).
32.
Gromicho M, Coelho MM, Alves MJ, Collares-Pereira MJ: Cytogenetic analysis of Anaecypris hispanica and its relationship with the paternal ancestor of the diploid-polyploid Squalius alburnoides complex. Genome 49:1621-1627 (2006a).
33.
Gromicho M, Coutanceau JP, Ozouf-Costaz C, Collares-Pereira MJ: Contrast between extensive variation of 28S rDNA and stability of 5S rDNA and telomeric repeats in the diploid-polyploid Squalius alburnoides complex and in its maternal ancestor Squalius pyrenaicus (Teleostei, Cyprinidae). Chromosome Res 14:297-306 (2006b).
34.
Henegariu O, Heerema NA, Lowe Wright L, Bray-Ward P, Ward D, Vance GH: Improvements in cytogenetic slide preparation: controlled chromosome spreading, chemical aging and gradual denaturing. Cytometry 43:101-109 (2001).
35.
Jaillon O, Aury J, Brunet F, Petit JL, Stange-Thomann N, et al: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946-957 (2004).
36.
Kirtiklis L, Porycka K, Borón A, Coutanceau J-P, Dettai A: Use of the chromosomal co-location of the minor 5S and the major 28S rDNA as a cytogenetic marker within the genus Leuciscus (Pisces, Cyprinidae). Folia Biol 58:245-249 (2010).
37.
Leunda PM, Elvira B, Ribeiro F, Miranda R, Oscoz J, et al: International standardization of common names for Iberian endemic freshwater fishes. Limnetica 28:189-202 (2009).
38.
Mable BK, Alexandrou MA, Taylor MI: Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151-182 (2011).
39.
Mallet J: Hybridization as an invasion of the genome. Trends Ecol Evol 20:229-237 (2005).
40.
Mank JE, Avise JC: Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica 127:321-327 (2006).
41.
Marková M, Vyskot B: New horizons of genomic in situ hybridization. Cytogenet Genome Res 126:368-375 (2009).
42.
Martins C, Wasko AP: Organization and evolution of 5S ribosomal DNA in the fish genome, in Williams CR (ed): Focus on Genome Research, pp 335-363 (Nova Science Publishers, New York 2004).
43.
Mayden RL, Chen W-J, Bart HL, Doosey MH, Simons AM, et al: Reconstructing the phylogenetic relationships of the earth's most diverse clade of freshwater fishes - order Cypriniformes (Actinopterygii: Ostariophysi): a case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51:500-514 (2009).
44.
Mazzuchelli J, Kocher TD, Yang F, Martins C: Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genomics 13:463 (2012).
45.
Medrano L, Bernardi G, Couturier J, Dutrillaux B, Bernardi G: Chromosome banding and genome compartmentalization in fishes. Chromosoma 96:178-183 (1988).
46.
Monteiro R, Carvalho C, Collares-Pereira MJ: Karyotype and genome size of Iberochondrostoma almacai (Teleostei, Cyprinidae) and comparison with the sister-species I. lusitanicum. Genet Mol Biol 32:268-275 (2009).
47.
Nabais C, Rampin M, Collares-Pereira MJ: Comparative cytogenetics of two endangered leuciscine fish, Squalius aradensis and S. torgalensis (Teleostei, Cyprinidae), from the Iberian Peninsula. Comp Cytogenet 7:33-42 (2013).
48.
Ocalewicz K, Jankun M, Borón A: Karyotypic characterization of bream, Abramis brama (Pisces, Cyprinidae). Folia Zool 53:329-334 (2004).
49.
Perea S, Böhme M, Zupancic P, Freyhof J, Sanda R, et al: Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol 10:265 (2010).
50.
Pereira C, Aboim MA, Ráb P, Collares-Pereira MJ: Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae). Heredity, in press.
51.
Pereira C, Neto A, Collares-Pereira MJ: Cytogenetic survey of species of two distinct genera of Iberian nases (Cyprinidae, Leuciscinae) that hybridize extensively in nature. I. Evidence of a similar and conserved chromosome pattern with some few species-specific markers at macro-structural level. Genetica 137:285-291 (2009).
52.
Pereira CS, Ráb P, Collares-Pereira MJ: Chromosomes of European cyprinid fishes: comparative cytogenetics and chromosomal characteristics of ribosomal DNAs in nine Iberian chondrostomine species (Leuciscinae). Genetica 140:485-495 (2012).
53.
Phillips RB: Application of fluorescence in situ hybridization (FISH) to fish genetics and genome mapping. Mar Biothechnol 3:S145-S152 (2001).
54.
Phillips RB, Reed KM: Application of fluorescence in situ hybridization (FISH) techniques to fish genetics: a review. Aquaculture 140:197-216 (1996).
55.
Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, et al: Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 10:46 (2009).
56.
Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, et al: Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455-468 (2011).
57.
Ráb P, Collares-Pereira MJ: Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes) (Review). Folia Zool 44:193-214 (1995).
58.
Ráb P, Bohlen J, Rábová M, Flajšhans M, Kalous L: Cytogenetics as a tool in fish conservation: the present situation in Europe, in Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds): Fish Cytogenetics, pp. 215-241 (Science Publishers, Inc., Enfield 2007).
59.
Ráb P, Rábová M, Pereira C, Collares-Pereira MJ, Pelikánová S: Chromosome studies of European cyprinid fishes: interspecific homology of leuciscine cytotaxonomic marker - the largest subtelocentric chromosome pair as revealed by cross-species painting. Chromosome Res 16:863-873 (2008).
60.
Rábová M, Ráb P, Ozouf-Costaz C, Ene C, Wanzeböck J: Comparative cytogenetics and chromosomal characteristics of ribosomal DNA in the fish genus Vimba (Cyprinidae). Genetica 118:83-91 (2003).
61.
Rampin M, Bi K, Bogart JP, Collares-Pereira MJ: Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using genomic in situ hybridization (GISH). Comp Cytogenet 6:287-300 (2012).
62.
Robalo JI, Almada VC, Levy A, Doadrio I: Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol Phylogenet Evol 42:362-372 (2007).
63.
Rodrigues E, Collares-Pereira MJ: NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae). Genetica 98:59-63 (1996).
64.
Rossi AR, Milana V, Hett AK, Tancioni L: Molecular cytogenetic analysis of the Appenine endemic cyprinid fish Squalius lucumonis and three other Italian leuciscines using chromosome banding and FISH with rDNA probes. Genetica 140:469-476 (2012).
65.
Schmid M, Ziegler CG, Steinlein C, Nanda I, Schartl M: Cytogenetics of the bleak (Alburnus alburnus), with special emphasis on the B chromosomes. Chromosome Res 14:231-242 (2006).
66.
Seehausen O: Hybridization and adaptive radiation. Trends Ecol Evol 19:198-207 (2004).
67.
Sola L, Gornung E: Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): an overview. Genetica 111:397-412 (2001).
68.
Sola L, Cataudella S, Capanna E: New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: a review. Genetica 54:285-328 (1981).
69.
Speicher MR, Carter NP: The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782-792 (2005).
70.
Svartman M, Stanyon R: The chromosomes of Afrotheria and their bearing on Mammalian genome evolution. Cytogenet Genome Res 137:144-153 (2012).
71.
Symonová R, Majtánová Z, Sember A, Staaks GBO, Bohlen J, et al: Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol 13:42 (2013).
72.
Valente GT, Schneider CH, Gross MC, Feldberg E, Martins C: Comparative cytogenetics of cichlid fishes through genomic in-situ hybridization (GISH) with emphasis on Oreochromis niloticus. Chromosome Res 17:791-799 (2009).
73.
Valić D, Kapetanović D, Zanella D, Mrakovčić M, Teskeredžić E, et al: The karyotype and NOR phenotype of Telestes ukliva (Cyprinidae). Folia Zool 59:169-173 (2010).
74.
Zhu H-P, Gui J-F: Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture 265:109-117 (2007).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.