When comparing the known picture of polyploidy in animals and in plants, it is possible to recognize some similarities, namely: (i) multiple and recurrent origins in several well-established taxonomic groups; (ii) a strong and regular association with hybridization events; (iii) the production of genotypic diversity; (iv) a rapid genomic reshuffling; (v) a very active role of transposable elements in allopolyploids; (vi) a comparatively privileged occurrence in harsher environments when compared with their diploid relatives, and (vii) gene silencing and divergence of duplicated genes without disruption of duplicated loci. Research on polyploidy was highly biased towards plants during the last century because polyploidy in animals was for long time considered rare, occasional and irrelevant from an evolutionary perspective. However, as empirically observed in plants, genome rediploidization starts in polyploid organisms immediately after the polyploid shock. Given the speed and dynamicity of this process, evidence of genome multiplication is completely erased over time, and hence, only the most recent events are likely to be acknowledged. Although varying in expression between and within taxonomic groups, polyploidy and hybridization are ubiquitous in animals and may be recurrent, fostering evolution. Since evolutionary allopolyploid genomes behave as biologically diploid, zoologists have to challenge the old paradigm of an irrelevant evolutionary role in animals using current genomic and cytogenomic tools. These methods are most likely to reveal the role of polyploid mechanisms in producing evolutionary novelties. Nonsexual complexes are the perfect models to bridge the gap between empirical and theoretical research, while the evolutionary process is in action. Such animal complexes represent a transient stage that, in general, moves towards a polyploid stage, where bisexuality might be recovered, ultimately giving rise to a new gonochoric species. These pathways are herein illustrated by the Iberian allopolyploid Squalius alburnoides. Some general aspects on this fish's complex are updated and reviewed, namely the reproductive modes of the distinct genomotypes, since variable ploidies and genomic combinations occur in natural populations. Most recent data on the mechanisms of gene expression regulation and the importance of the genomic context in driving allelic expression are also included. It was first demonstrated that a regulatory mechanism involving dosage compensation by gene-copy silencing exists in allotriploid females and that allelic expression patterns differed either between genomically equivalent individuals or within the same individual (between tissues and genes). Thus, instead of a whole haplome inactivation, a biased silencing towards repression of a specific allele was observed as well as a reduction of the transcript levels to the diploid state. See also sister article focusing on plants by Tayalé and Parisod in this themed issue

1.
Adams KL, Wendel JF: Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82:573-581 (2004).
2.
Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135-141 (2005).
3.
Adams KL, Cronn R, Percifield R, Wendel JF: Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649-4654 (2003).
4.
Albertin W, Marullo P: Polyploidy in fungi: evolution after whole-genome duplication. Proc Biol Sci 279:2497-2509 (2012).
5.
Alleman M, Doctor J: Genomic imprinting in plants: observations and evolutionary implications. Plant Mol Biol 43:147-161 (2000).
6.
Alves MJ, Coelho MM, Collares-Pereira MJ, Dowling TE: Maternal ancestry of the Rutilus alburnoides complex (Teleostei, Cyprinidae) as determined by analysis of cytochrome b sequences. Evolution 51:1584-1592 (1997).
7.
Alves MJ, Coelho MM, Próspero MI, Collares-Pereira MJ: Production of fertile unreduced sperm by hybrid males of the Rutilus alburnoides complex (Teleostei, Cyprinidae): an alternative route to genome tetraploidization in unisexuals. Genetics 151:277-283 (1999).
8.
Alves MJ, Coelho MM, Collares-Pereira MJ: Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111:375-385 (2001).
9.
Alves MJ, Collares-Pereira MJ, Dowling TE, Coelho MM The genetics of maintenance of an all-male lineage in the Squalius alburnoides complex. J Fish Biol 60:649-662 (2002).
10.
Alves MJ, Gromicho M, Collares-Pereira MJ, Crespo-López E, Coelho MM: Simultaneous production of triploid and haploid eggs by triploid Squalius alburnoides (Teleostei: Cyprinidae). J Exp Zool A Comp Exp Biol 301:552-558 (2004).
11.
Arai R: Fish Karyotypes. A Check List. (Springer, Tokyo 2011).
12.
Auger DL, Gray AD, Ream TS, Kato A, Coe EH, Birchler JA: Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 169:389-397 (2005).
13.
Bento M, Gustafson JP, Viegas W, Silva M: Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome 54:175-183 (2011).
14.
Bi K, Bogart JP: Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res 112:307-312 (2006).
15.
Bi K, Bogart JP, Fu J: Intergenomic translocations in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata). Cytogenet Genome Res 116:289-297 (2007).
16.
Bi K, Bogart JP, Fu J: Genealogical relationships of southern Ontario polyploid unisexual salamanders (genus Ambystoma) inferred from intergenomic exchanges and major rDNA cytotypes. Chromosome Res 16:275-289 (2008).
17.
Bi K, Bogart JP, Fu J: An examination of intergenomic exchanges in A. laterale - dependent unisexual salamanders in the genus Ambystoma. Cytogenet Genome Res 124:44-50 (2009).
18.
Bickham JW, Hanks BG: Diploid-triploid mosaicism and tissue ploidy diversity within Platemys platycephala from Suriname. Cytogenet Genome Res 127:280-286 (2009).
19.
Birchler JA, Veitia RA: The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395-402 (2007).
20.
Birchler JA, Veitia RA: The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytol 186: 54-62 (2010).
21.
Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA: Heterosis. Plant Cell 22:2105-2112 (2010).
22.
Bode SNS, Adolfsson S, Lamatsch DK, Martins MJF, Schmit O, et al: Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Mol Phylogenet Evol 54: 542-552 (2010).
23.
Bogart JP, Bi K, Fu JZ, Noble DWA, Niedzwiecki J: Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50:119-136 (2007).
24.
Carmona JÁ, Sanjur OI, Doadrio I, Machordom A, Vrijenhoek RC: Hybridogenetic reproduction and maternal ancestry of polyploid Iberian fish: the Tropidophoxinellus alburnoides complex. Genetics 146:983-993 (1997).
25.
Choleva L, Janko K, De Gelas K, Bohlen J, Šlechtová V, et al: Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution 66:2191-2203 (2012).
26.
Christiansen DG, Reyer HU: From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63:1754-1768 (2009).
27.
Christiansen DG, Reyer HU: Effects of geographic distance, sea barriers and habitat on the genetic structure and diversity of all-hybrid water frog populations. Heredity 106:25-36 (2011).
28.
Claussen U: Chromosomics. Cytogenet Genome Res 111:101-106 (2005).
29.
Collares-Pereira MJ, Coelho MM: Reconfirming the hybrid origin and generic status of the Iberian cyprinid complex Squalius alburnoides. J Fish Biol 76:707-715 (2010).
30.
Comai L: The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836-846 (2005).
31.
Coyne JA, Orr HA: Speciation. (Sinauer Associates Incorporation, Sunderland 2004).
32.
Crespo-López ME, Duarte T, Dowling T, Coelho MM: Modes of reproduction of the hybridogenetic fish Squalius alburnoides in the Tejo and Guadiana rivers: an approach with microsatellites. Zoology 109:277-286 (2006).
33.
Cunha C, Coelho MM, Carmona JA, Doadrio I: Phylogeographical insights into the origins of the Squalius alburnoides complex via multiple hybridization events. Mol Ecol 13:2807-2817 (2004).
34.
Cunha C, Ignacio D, Coelho MM: Speciation towards tetraploidization after intermediate processes of non-sexual reproduction. Phil Trans R Soc B 363:2921-2929 (2008).
35.
Cunha C, Bastir M, Coelho MM, Doadrio I: Body shape evolution among ploidy levels of the Squalius alburnoides hybrid complex (Teleostei, Cyprinidae). J Evol Biol 22:718-728 (2009).
36.
Dawley RM: An introduction to unisexual vertebrates, in Dawley RM, Bogart JP (eds): Evolution and Ecology of Unisexual Vertebrates, pp 1-18 (New York State Museum, New York 1989).
37.
Dawley RM, Goddard KA: Diploid-triploid mosaics among unisexual hybrids of the minnows Phoxinus eos and Phoxinus neogaeus. Evolution 42:649-659 (1988).
38.
Dawley RM, Bogart JP (eds): Evolution and Ecology of Unisexual Vertebrates (New York State Museum, New York 1989).
39.
Day SJ, Lawrence PA: Measuring dimensions: the regulation of size and shape. Development 127:2977-2987 (2000).
40.
Dobigny G, Yang F (eds): Comparative cytogenetics in the genomics era: cytogenomics comes of age. Chromosome Res 16:1-215 (2008).
41.
Dufresne F, Hebert PDN: Pleistocene glaciations and polyphyletic origins of polyploidy in an arctic cladoceran. Proc R Soc B 264:201-206 (1997).
42.
Egozcue S, Blano J, Vidal F, Egozcue J: Diploid sperm and the origin of triploidy. Hum Reprod 17:5-7 (2002).
43.
Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC: A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol Phylogenet Evol 33:197-213 (2004).
44.
Evans BJ, Pyron RA, Wiens JJ: Polyploidization and sex chromosome evolution in amphibians, in Soltis PS, Soltis DE (eds): Polyploidy and Genome Evolution, pp 385-410 (Springer, Heidelberg 2012).
45.
Ezaz T, Graves JAM: Foreword: sex and sex chromosomes-new clues from nonmodel species. Chromosome Res 20:1-5 (2012).
46.
Fontdevila A: Hybrid genome evolution by transposition. Cytogenet Genome Res 110: 49-55 (2005).
47.
Gallardo MH, Bickham JW, Hoeycutt RL, Ojeda RA, Köhler N: Discovery of tetraploidy in a mammal. Nature 401:341 (1999).
48.
Gallardo MH, Kausel G, Jiménez A, Bacquet C, González C, et al: Whole-genome duplications in South American desert rodents (Octodontidae). Biol J Linn Soc 82:443-451 (2004).
49.
Gallardo MH, González CA, Cebrián I: Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae). Genomics 88:214-221 (2006).
50.
Gomes-Ferreira A, Ribeiro F, Moreira da Costa L, Cowx IG, Collares-Pereira MJ: Variability in diet and foraging behaviour between sexes and ploidy forms of the hybridogenetic Squalius alburnoides complex (Cyprinidae) in the Guadiana River basin, Portugal. J Fish Biol 66:454-467 (2005).
51.
Gregory TR: Genome size evolution in animals, in Gregory TR (ed): The Evolution of the Genome, pp 3-87 (Elsevier Incorporation, Burlington 2005).
52.
Gregory TR, Mable BK: Polyploidy in animals, in Gregory TR (ed): The Evolution of the Genome, pp 427-517 (Elsevier Incorporation, Burlington 2005).
53.
Grishanin AK, Rasch EM, Dodson SI, Wyngaard GA: Genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Crustacea: Copepoda). II. Crossbreeding experiments, cytogenetics, and a model of chromosomal evolution. Evolution 60:247-256 (2006).
54.
Gromicho M, Collares-Pereira MJ: The evolutionary role of hybridization and polyploidy in an Iberian cyprinid fish - a cytogenetic review, in Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds): Fish Cytogenetics, pp 41-67 (Science Publishers, Enfield 2007).
55.
Gui JF, Zhou L: Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci 53:409-415 (2010).
56.
Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, et al: Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835-17840 (2009).
57.
Hall WP: Chromosome variation, genomics, speciation and evolution in Sceloporus lizards. Cytogenet Genome Res 127:143-165 (2009).
58.
Hardie DC, Hebert PDN: Genome-size evolution in fishes. Can J Fish Aquat Sci 61:1636-1646 (2004).
59.
Hegarty MJ, Barker GL, Wilson ID, Abbott RJ, Edwards KJ, Hiscock SJ: Transcriptome shock after interspecific hybridization in Senecio is ameliorated by genome duplication. Curr Biol 16:1652-1659 (2006).
60.
Higgins J, Magusin A, Trick M, Fraser F, Bancroft I: Use of mRNA-seq to discriminate contributions to the transcriptome from the constituent genomes of the polyploid crop species Brassica napus. BMC Genomics 13:247 (2012).
61.
Holloway AK, Cannatella DC, Gerhardt HC, Hillis DM: Polyploids with different origins and ancestors from a single sexual polyploid species. Am Nat 167:E88-E101 (2006).
62.
Hörandl E: Geographical parthenogenesis: opportunities for asexuality, in Schön I, Martens K, van Dijk P (eds): Lost Sex: The Evolutionary Biology of Parthenogenesis, pp 161-186 (Springer, Dordrecht 2009).
63.
Huntzinger E, Izaurralde E: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99-110 (2011).
64.
Inácio A, Pinho J, Pereira PM, Comai L, Coelho MM: Global analysis of the small RNA transcriptome in different ploidies and genomic combinations of a vertebrate complex - the Squalius alburnoides. PLosOne 7:e41158 (2012).
65.
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, et al: Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431: 946-957 (2004).
66.
Janko K, Bohlen J, Lamatsch D, Flajshans M, Epplen JT, et al: The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobiti s: Teleostei), and their ability to establish successful clonal lineages-on the evolution of polyploidy in asexual vertebrates. Genetica 131:185-194 (2007).
67.
Janko K, Kotusz J, De Gelas K, Slechtová V, Opoldusová Z, et al: Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS One 7:e45384 (2012).
68.
Jiang FF, Wang ZW, Zhou L, Jiang L, Zhang XJ, et al: High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol Phylogenet Evol 66:350-359 (2013).
69.
Jokela J, Lively CM, Dybdahl MF, Fox JA: Genetic variation in sexual and clonal lineages of a freshwater snail. Biol J Linn Soc 79:165-181 (2003).
70.
Kellogg EA: What happens to genes in duplicated genomes. Proc Natl Acad Sci USA 100:4369-4371 (2003).
71.
Kierzkowski P, Paśko Ł, Rybacki M, Socha M, Ogielska M: Genome dosage effect and hybrid morphology - the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann Zool Fennici 48:56-66 (2011).
72.
Lamatsch DK, Stöck M: Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes, in Schön I, Martens K, van Dijk P (eds): Lost Sex: The Evolutionary Biology of Parthenogenesis, pp 399-432 (Springer, Dordrecht 2009).
73.
Lamatsch DK, Schmid M, Schartl M: A somatic mosaic of the gynogenetic Amazon molly. J Fish Biol 60:1417-1422 (2002).
74.
Le Comber SC, Smith C: Polyploidy in fishes: patterns and processes. Biol J Linn Soc 82:431-442 (2004).
75.
Leggatt RA, Iwama GK: Occurrence of polyploidy in fishes. Rev Fish Biol Fisher 13:237-246 (2003).
76.
Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, et al: The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101: 805-814 (2008).
77.
Lewis WH (ed): Polyploidy. Biological Relevance (Plenum Press, New York 1980).
78.
Li YJ, Yu Z, Zhang MZ, Qian C, Abe S, Arai K: The origin of natural tetraploid loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from meiotic chromosome configurations. Genetica 139:805-811 (2011).
79.
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769-773 (2005).
80.
Liu SJ: Distant hybridization leads to different ploidy fishes. Sci China Life Sci 53:416-425 (2010).
81.
Lutes AA, Baumann DP, Neaves WB, Baumann P: Laboratory synthesis of an independently reproducing vertebrate species. Proc Natl Acad Sci USA 108:9910-9915 (2011).
82.
Ma XF, Gustavson JP: Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109:236-249 (2005).
83.
Mable BK: ‘Why polyploidy is rarer in animals than in plants': myths and mechanisms. Biol J Linn Soc 82:453-466 (2004).
84.
Mable BK: Polyploids and hybrids in changing environments: winners or losers in the struggle for adaptation? Heredity 110:95-96 (2013).
85.
Mable BK, Alexandrou MA, Taylor MI: Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151-182 (2011).
86.
Madlung A: Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity 110:99-104 (2013).
87.
Makalowski W: Are we polyploids? A brief history of one hypothesis. Genome Res 11:667-670 (2001).
88.
Mallet J: Hybridization as an invasion of the genome. Trends Ecol Evol 20:229-237 (2005).
89.
Malone JH, Cho DY, Mattiuzzo NR, Artieri CG, Jiang L, et al: Mediation of Drosophila autosomal dosage effects and compensation by network interactions. Genome Biol 13: r28 (2012).
90.
Mank JE, Avise JC: Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica 127:321-327 (2006).
91.
Martins MJ, Collares-Pereira MJ, Cowx IG, Coelho MM: Diploids versus triploids of Rutilus alburnoides: spatial segregation and morphological differences. J Fish Biol 52:817-828 (1998).
92.
Matos I, Machado MP, Sucena E, Collares-Pereira MJ, Schartl M, Coelho MM: Evidence for hermaphroditism in the Squalius alburnoides allopolyploid fish complex. Sex Dev 4:170-175 (2010).
93.
Matos I, Sucena E, Machado MP, Gardner R, Inácio A, et al: Ploidy mosaicism and allele-specific gene expression differences in the allopolyploid Squalius alburnoides. BMC Genet 12:101 (2011).
94.
McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ: Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20:816-825 (2010).
95.
Meyer A, Van de Peer Y: From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27:937-945 (2005).
96.
Milani L, Ghiselli F, Pellecchia M, Scali V, Passamonti M: Reticulate evolution in stick insects: the case of Clonopsis (Insecta Phasmida). BMC Evol Biol 10:258 (2010).
97.
Ming R, Bendahmane A, Renner SS: Sex chromosomes in land plants. Annu Rev Plant Biol 62:485-514 (2011).
98.
Müller HJ: Why polyploidy is rarer in animals than in plants. Am Nat 59:346-353 (1925).
99.
Nabais C, Pereira C, Cuñado N, Collares-Pereira MJ: Synaptonemal complexes in the hybridogenetic Squalius alburnoides fish complex: new insights on the gametogenesis of allopolyploids. Cytogenet Genome Res 138: 31-35 (2012).
100.
Neaves WB, Baumann P: Unisexual reproduction among vertebrates. Trends Genet 27:81-88 (2011).
101.
Ohno S: Evolution by gene duplication (Springer, New York 1970).
102.
Ohno S: Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. Semin in Cell Dev Biol 10:517-522 (1999).
103.
Otto SP: The evolutionary consequences of polyploidy. Cell 131: 452-462 (2007).
104.
Otto SP, Whitton J: Polyploid incidence and evolution. Annu Rev Genet 34:401-437 (2000).
105.
Pala I, Coelho MM: Contrasting views over a hybrid complex: Between speciation and evolutionary ‘dead-end'. Gene 347:283-294 (2005).
106.
Pala I, Coelho MM, Schartl M: Dosage compensation by gene-copy silencing in a triploid hybrid fish. Curr Biol 18:1344-1348 (2008).
107.
Pala I, Schartl M, Brito M, Malta Vacas J, Coelho MM: Gene expression regulation and lineage evolution: the North and South tale of the hybrid polyploid Squalius alburnoides complex. Proc R Soc B 277:3519-3525 (2010).
108.
Parisod C, Alix K, Just J, Petit M, Sarilar V, et al: Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37-45 (2010).
109.
Powell AE, Lenhard M: Control of organ size in plants. Curr Biol 22:R360-367 (2012).
110.
Próspero MI, Collares-Pereira MJ: Nuclear DNA content variation in the diploid-polyploid Leuciscus alburnoides complex (Teleostei, Cyprinidae) assessed by flow cytometry. Folia Zool 49:53-58 (2000).
111.
Ráb P, Collares-Pereira MJ: Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes): a review. Folia Zool 44:193-214 (1995).
112.
Rampin M, Bi K, Bogart JP, Collares-Pereira MJ: Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using Genomic In Situ Hybridization (GISH). Comp Cytogen 6:287-300 (2012).
113.
Rapp RA, Udall JA, Wendel JF: Genomic expression dominance in allopolyploids. BMC Biol 7:18 (2009).
114.
Rasch EM, Wyngaard GA: Genome sizes of cyclopoid copepods (Crustacea): evidence of evolutionary constraint. Biol J Linn Soc 87:625-635 (2006).
115.
Ribeiro F, Cowx IG, Tiago P, Filipe AF, Moreira da Costa L, Collares-Pereira MJ: Growth and reproductive traits of diploid and triploid forms of Squalius alburnoides cyprinid complex in a tributary of Guadiana River, Portugal. Arch Hydrobiol 156:471-484 (2003).
116.
Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtýl M: Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 380-383:13-20 (2013).
117.
Saitoh K, Chen WJ, Mayden RL: Extensive hybridization and tetrapolyploidy in spined loach fish. Mol Phylogenet Evol 56:1001-1010 (2010).
118.
Scali V, Milani L: New Clonopsis stick insects from Morocco: the amphigonic C. felicitatis sp.n., the parthenogenetic C. soumiae sp.n., and two androgenetic taxa. Ital J Zool 76:291-305 (2009).
119.
Schultz RJ: Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am Nat 103:605-619 (1969).
120.
Schultz RJ: Role of polyploidy in the evolution of fishes, in Lewis WH (ed): Polyploidy: Biological Relevance, pp 313-340 (Springer, New York 1980).
121.
Shen Y, Catchen J, Garcia T, Amores A, Beldorth I, et al: Identification of transcriptome SNPs between Xiphophorus lines and species for assessing allele specific gene expression within F1 interspecies hybrids. Comp Biochem Physiol C Toxicol Pharmacol 155:102-108 (2012).
122.
Smith EM, Gregory TR: Patterns of genome size diversity in the ray-finned fishes. Hydrobiologia 625:1-25 (2009).
123.
Soltis DE, Soltis PS: Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348-352 (1999).
124.
Soltis PS, Soltis DE: Polyploidy and Genome Evolution (Springer-Verlag, Berlin 2012).
125.
Sousa-Santos C, Collares-Pereira MJ, Almada VC: Evidence of extensive mitochondrial introgression with nearly complete substitution of the typical Squalius pyrenaicus-like mtDNA of the Squalius alburnoides complex (Cyprinidae) in an independent Iberian drainage. J Fish Biol 68:S292-S301 (2006a).
126.
Sousa-Santos C, Collares-Pereira MJ, Almada VC: May a hybridogenetic complex regenerate the nuclear genome of both sexes of a missing ancestor? - First evidence on the occurrence of a nuclear non-hybrid Squalius alburnoides (Cyprinidae) female based on DNA sequencing. J Nat Hist 40:1443-1448 (2006b).
127.
Sousa-Santos C, Collares-Pereira MJ, Almada V: Fertile triploid males: an uncommon case among hybrid vertebrates. J Exp Zool A Ecol Genet Physiol 307:220-225 (2007a).
128.
Sousa-Santos C, Collares-Pereira MJ, Almada V: Reading the history of a hybrid fish complex from its molecular record. Mol Phylogenet Evol 45:981-996 (2007b).
129.
Speicher MR, Carter NP: The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782-792 (2005).
130.
Stenberg P, Lundmark M, Knutelski S, Saura A: Evolution of clonality and polyploidy in a weevil system. Mol Bio Evol 20:1626-1632 (2003).
131.
Stöck M, Lamatsch DK, Steinlein C, Epplen J, Grosse WR, et al: A bisexually reproducing all-triploid vertebrate. Nat Genet 30:325-328 (2002).
132.
Stöck M, Steinlein C, Lamatsch DK, Schartl M, Schmid M: Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 124:255-272 (2005).
133.
Stöck M, Ustinova J, Lamatsch DK, Schartl M, Perrin N, Moritz C: A vertebrate reproductive system involving three ploidy levels: hybrid origin of triploids in a contact zone of diploid and tetraploid Palearctic green toads (Bufo viridis subgroup). Evolution 64:944-959 (2010).
134.
Stöck M, Ustinova J, Betto-Colliard C, Schartl M, Moritz C, Perrin N: Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc R Soc B 279:1293-1299 (2012).
135.
Suomalainen E, Saura A, Lokki J: Cytology and Evolution in Parthenogenesis (CRC Press Incorporation, Boca Raton 1987).
136.
Svartman M, Stone G, Stanyon R: Molecular cytogenetics discards polyploidy in mammals. Genomics 85:425-430 (2005).
137.
Takada M, Tachihara K, Kon T, Yamamoto G, Iguchi K: Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol Biol 10:7 (2010).
138.
Tumaneng K, Russell RC, Guan KL: Organ size control by Hippo and TOR Pathways. Curr Biol 22:R368-379 (2012).
139.
Van de Peer Y, Meyer A: Large-scale gene and ancient genome duplications, in Gregory TR (ed): The Evolution of the Genome, pp 329-368 (Elsevier Incorporation, Burlington 2005).
140.
Vrijenhoek RC: Genetic and ecological constraints on the origins and establishment of unisexual vertebrates, in Dawley RM, Bogart JP (eds): Evolution and Ecology of Unisexual Vertebrates, pp 24-31 (New York State Museum, New York 1989).
141.
Vrijenhoek RC, Parker ED Jr: Geographical parthenogenesis: general purpose genotypes and frozen niche variation, in Schön I, Martens K, van Dijk P (eds): Lost Sex: The Evolutionary Biology of Parthenogenesis, pp 99-131 (Springer, Dordrecht 2009).
142.
Welch DBM, Welch JLM, Meselson M: Evidence for degenerate tetraploidy in bdelloid rotifers. Proc Natl Acad Sci USA 105:5145-5149 (2008).
143.
Wendel JF: Genome evolution in polyploids. Plant Mol Biol 42:225-249 (2000).
144.
White MJD: Modes of Speciation (W.H. Freeman, San Francisco 1978).
145.
Wolfe KH: Yesterday's polyploids and the mystery of diploidization. Nat Rev Genet 2:333-341 (2001).
146.
Yu X, Zhou T, Li K, Li Y, Zhou M: On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China. Genetica 72:225-236 (1987).
147.
Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P: Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res 134:206-212 (2011).
148.
Zhang Y, Liang L, Jiang P, Li D, Lu C, Sun X: Genome evolution trend of common carp (Cyprinus carpio L.) as revealed by the analysis of microsatellite loci in a gynogentic family. J Genet Genomics 35:97-103 (2008).
149.
Zhu H-P, Gui J-F: Identification of genome organization in the unusual allotetraploid form of Carassius auratusgibelio. Aquaculture 265:109-117 (2007).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.