The independent evolution of heteromorphic sex chromosomes in 19 species from 4 families of flowering plants permits studying X/Y divergence after the initial recombination suppression. Here, we document autosome/Y divergence in the tropical Cucurbitaceae Coccinia grandis, which is ca. 3 myr old. Karyotyping and C-value measurements show that the C. grandis Y chromosome has twice the size of any of the other chromosomes, with a male/female C-value difference of 0.094 pg or 10% of the total genome. FISH staining revealed 5S and 45S rDNA sites on autosomes but not on the Y chromosome, making it unlikely that rDNA contributed to the elongation of the Y chromosome; recent end-to-end fusion also seems unlikely given the lack of interstitial telomeric signals. GISH with different concentrations of female blocking DNA detected a possible pseudo-autosomal region on the Y chromosome, and C-banding suggests that the entire Y chromosome in C. grandis is heterochromatic. During meiosis, there is an end-to-end connection between the X and the Y chromosome, but the X does not otherwise differ from the remaining chromosomes. These findings and a review of plants with heteromorphic sex chromosomes reveal no relationship between species age and degree of sex chromosome dimorphism. Its relatively small genome size (0.943 pg/2C in males), large Y chromosome, and phylogenetic proximity to the fully sequenced Cucumis sativus make C. grandis a promising model to study sex chromosome evolution.

1.
Agarwal PK, Roy RP: Karyotype of Coccinia indica. Indian J Genet Plant Breed 44:117–120 (1984).
2.
Ali HB, Lysak MA, Schubert I: Genomic in situ hybridization in plants with small genomes is feasible and elucidates the chromosomal parentage in interspecific Arabidopsis hybrids. Genome 47:954–960 (2004).
3.
Armstrong SJ, Filatov DA: A cytogenetic view of sex chromosome evolution in plants. Cyt Genome Res 120:241–246 (2008).
4.
Bachtrog D, Kirkpatrick M, Mank JE, McDaniel SF, Pires JC, et al: Are all sex chromosomes created equal? Trends Genet 27:350–357 (2011).
5.
Bergero R, Charlesworth D: Preservation of the Y transcriptome in a 10-million-year-old plant sex chromosome system. Curr Biol 21:1470–1474 (2011).
6.
Bergero R, Forrest A, Charlesworth D: Active miniature transposons from a plant genome and its non-recombining Y chromosome. Genetics 178:1085–1092 (2008).
7.
Bhaduri P, Bose P: Cyto-genetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. J Genet 48:237–256 (1947).
8.
Błocka-Wandas M, Sliwinska E, Grabowska-Joachimiak A, Musial K, Joachimiak AJ: Male gametophyte development and two different DNA classes of pollen grains in Rumex acetosa L., a plant with an XX/XY1Y2 sex chromosome system and a female-biased sex ratio. Sex Plant Reprod 20:171–180 (2007).
9.
Bombosch A, Wieneke A, Busch A, Jonas R, Hentschel J, et al: Narrow species concepts in the Frullania dilatataappalachianaeboracensis complex (Porellales, Jungermanniopsida): evidence from nuclear and chloroplast DNA markers. Plant Syst Evol 290:151–158 (2010).
10.
Borchert T, Fuchs J, Winkelmann T, Hohe A: Variable DNA content of Cyclamen persicum regenerated via somatic embryogenesis: rethinking the concept of long-term callus and suspension cultures. Plant Cell Tiss Organ Cult 90:255–263 (2007).
11.
Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, et al: Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16:961–976 (2008).
12.
Chakravorti AK: Cytology of Coccinia indica W. & A. with reference to the behavior of its sex-chromosomes. Proc Ind Acad Sci B 27:74–86 (1948).
13.
Charlesworth B, Charlesworth D: The degeneration of Y chromosomes. Philos Trans R Soc Lond B Biol Sci 355:1563–1572 (2000).
14.
Chattopadhyay D, Sharma AK: Chromosome studies and nuclear DNA in relation to sex difference and plant habit in two species of Cucurbitaceae. Cytologia 56:409–417 (1991).
15.
Chibalina MV, Filatov DA: Plant Y chromosome degeneration is retarded by haploid purifying selection. Curr Biol 21:1475–1479 (2011).
16.
Costich DE, Meagher TR, Yurkow EJ: A rapid means of sex identification in Silenelatifolia by use of flow cytometry. Plant Mol Biology Reporter 9:359–370 (1991).
17.
Cuñado N, Navajas-Pérez R, de la Herrán R, Ruiz Rejón C, Ruiz Rejón M, et al: The evolution of sex chromosomes in the genus Rumex (Polygonaceae): identification of a new species with heteromorphic sex chromosomes. Chromosome Res 15:825–832 (2007).
18.
Divashuk MG, Alexandrov OS, Kroupin PY, Karlov GI: Molecular cytogenetic mapping of Humulus lupulus sex chromosomes. Cytogenet Genome Res 134:213–219 (2011).
19.
Filatov DA, Moneger F, Negrutiu I, Charlesworth D: Low variability in a Y-linked plant gene and its implications for Y chromosome evolution. Nature 404:388–390 (2000).
20.
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E: Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051 (1983).
21.
Grabowska-Joachimiak A, Sliwinska E, Pigula M, Skomra U, Joachimiak AJ: Genome size in Humulus lupulus L. and H. japonicus Siebold & Zucc. (Cannabaceae). Acta Soc Bot Pol 75:207–214 (2006).
22.
Grabowska-Joachimiak A, Mosiolek M, Lech A, Góralski G: C-banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation in Humulus japonicus Siebold & Zucc. Cytogenet Genome Res 132:203–211 (2011).
23.
Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W: Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biol 8:770–777 (2006).
24.
Guerra M: Reviewing the chromosome nomenclature of Levan et al. Rev Brasil Genet 4:741–743 (1986).
25.
Guha A, Sinha RK, Sinha S: Average packing ratio as a parameter for analyzing the karyotypes of dioecious cucurbits. Caryologia 57:117–120 (2004).
26.
Hizume M, Shiraishi H, Tanaka A: A cytological study of Podocarpus macrophyllus with special reference to sex chromosomes. Jap J Genet 63:413–423 (1988).
27.
Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B: An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma 115:376–382 (2006).
28.
Holstein N: Evolution, Biogeography, and Monographic Treatment of Coccinia (Cucurbitaceae) (Doctoral dissertation, Faculty of Biology, Ludwig-Maximilians University (LMU), Munich, 2012).
29.
Holstein N, Renner SS: A dated phylogeny and collection records reveal repeated biome shifts in the African genus Coccinia (Cucurbitaceae). BMC Evol Biol 11:28 (2011).
30.
Honys D, Twell D: Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652 (2003).
31.
Huang S, Li R, Zhang Z, Li L, Gu X, et al: The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281 (2009).
32.
Hughes JF, Skaletsky H, Pyntikova T, Graves TA, Daalen SK, et al: Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536–539 (2010).
33.
Ijdo JW, Wells RA, Baldini A, Reeders ST: Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl Acids Res 19:17 (1991).
34.
Jamilena M, Mariotti B, Manzano S: Plant sex chromosomes: molecular structure and function. Cytogenet Genome Res 120:255–264 (2008).
35.
Karlov GI, Danilova TV, Horlemann C, Weber G: Molecular cytogenetics in hop (Humulus lupulus L.) and identification of sex chromosomes by DAPI-banding. Euphytica 132:185–190 (2003).
36.
Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B: The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541 (2009).
37.
Kumar LS, Deodikar GB: Sex chromosomes of Coccinia indica Wight and Arn. Curr Sci 9:128–130 (1940).
38.
Kumar LS, Vishveshwaraiah S: Sex mechanism in Coccinia indica Wight and Arn. Nature 170:330–331 (1952).
39.
Kurita M, Kuroki Y: Y-chromosome and heterochromatin in Rumex acetosa. Jap J Genet 45:255–260 (1970).
40.
Lan T, Zhang S, Liu B, Li X, Chen R, Song W: Differentiating sex chromosomes of the dioecious Spinacia oleracea L. (spinach) by FISH of 45S rDNA. Cytogenet Genome Res 114:175–177 (2006).
41.
Lengerova M, Kejnovsky E, Hobza R, Macas J, Grant SR, Vyskot B: Multicolor FISH mapping of the dioecious model plant, Silene latifolia. Theor Appl Genet 108:1193–1199 (2004).
42.
Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, et al: A primitive Y chromosome in Papaya marks the beginning of sex chromosome evolution. Nature 427:348–352 (2004).
43.
Marais GA, Nicolas M, Bergero R, Chambrier P, Kejnovsky E, et al: Evidence for degeneration of the Y chromosome in the dioecious plant Silene latifolia. Curr Biol 18:545–549 (2008).
44.
Mariotti B, Navajas-Pérez R, Lozano R, Parker JS, de la Herrán R, et al: Cloning and characterization of dispersed repetitive DNA derived from microdissected sex chromosomes of Rumex acetosa. Genome 49:114–121 (2006).
45.
Mariotti B, Manzano S, Kejnovsky E, Vyskot B, Jamilena M: Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol Gen Genomics 281:249–259 (2009).
46.
Ming R, Bendahmane A, Renner SS: Sex chromosomes in land plants. Annu Rev Plant Biol 62:485–514 (2011).
47.
Moore RC, Kozyreva O, Lebel-Hardenack S, Siroky J, Hobza R, et al: Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia, provides clues to early events in sex chromosome evolution. Genetics 163:321–334 (2003).
48.
Navajas-Pérez R, de la Herrán R, López González G, Jamilena M, Lozano R, et al: The evolution of reproductive systems and sex-determining mechanisms within Rumex (Polygonaceae) inferred from nuclear and chloroplastidial sequence data. Mol Biol Evol 22:1929–1939 (2005).
49.
Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, et al: A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:e4 (2005).
50.
Piednoel M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, et al: Next generation sequencing reveals the impact of LTR retrotransposons on genome dynamics in a clade of increasingly parasitic angiosperms. Mol Biol Evol 2012;29:3601–3611.
51.
Rautenberg A, Sloan DB, Alden V, Oxelman B: Phylogenetic relationships of Silene multinervia and Silene section Conoimorpha (Caryophyllaceae). Syst Bot 37:226–237 (2012).
52.
Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, et al: Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol 28:2843–2854 (2011).
53.
Roy RP, Roy PM: Mechanism of sex determination in Coccinia indica. J Indian Bot Soc 50A:391–400 (1971).
54.
Ruiz Rejón C, Jamilena M, Garrido Ramos M, Parker JS, Ruiz Rejón M: Cytogenetic and molecular analysis of the multiple sex chromosome system of Rumex acetosa. Heredity 72:209–215 (1994).
55.
Sakamoto K, Ohmido N, Fukui K, Kamada H, Satoh S: Site-specific accumulation of a LINE-like retrotransposon in a sex chromosome of the dioecious plant Cannabis sativa. Plant Mol Biol 44:723–732 (2000).
56.
Schaefer H, Renner SS: Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60:122–138 (2011).
57.
Schmidt T, Schwarzacher T, Heslop-Harrison JS: Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88:629–636 (1994).
58.
Schwarzacher T, Heslop-Harrison P: Practical in situ hybridization (BIOS Scientific publishers, Oxford 2000).
59.
Schwarzacher T, Ambros P, Schweizer D: Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297 (1980).
60.
Shibata F, Hizume M, Kuroki Y: Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma 108:266–270 (1999).
61.
Shibata F, Hizume M, Kuroki Y: Differentiation and the polymorphic nature of the Y chromosomes revealed by repetitive sequences in the dioecious plant, Rumex acetosa. Chromosome Res 8:229–236 (2000).
62.
Siroky J, Lysak MA, Doležel J, Kejnovsky E, Vyskot B: Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res 9:387–393 (2001).
63.
Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, et al: The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837 (2003).
64.
Spigler RB, Lewers KS, Main DS, Ashman T-L: Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101:507–517 (2008).
65.
Spigler RB, Lewers KS, Johnson AL, Ashman T-L: Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J Hered 101(suppl.):S107–S117 (2010).
66.
Uchida W, Matsunaga S, Sugiyama R, Shibata F, Kazama Y, et al: Distribution of interstitial telomere-like repeats and their adjacent sequences in a dioecious plant, Silene latifolia. Chromosoma 111:313–320 (2002).
67.
Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, et al: Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proc Natl Acad Sci USA 104:6472–6477 (2007).
68.
Yu Q, Navajas-Pérez R, Tong E, Robertson J, Moore PH, et al: Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop Plant Biol 1:49–57 (2008).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.