Repetitive DNA sequences constitute a high fraction of eukaryotic genomes and are considered a key component for the chromosome and karyotype evolution. For a better understanding of their evolutionary role in beetles, we examined the chromosomes of 5 species of the genus Coprophanaeus by C-banding, fluorochrome staining CMA3/DA/DAPI, and fluorescence in situ hybridization (FISH) with probes for 18S and 5S rRNA genes. The Coprophanaeus species have identical chromosome numbers and a conserved chromosome morphology. However, they show different sex chromosome forms, XY, Xy, XYp, and heterochromatin seems to be involved in the origin and diversification of these forms. C-banding showed primarily the presence of diphasic chromosomes in all species examined. After CMA3/DA/DAPI staining, 1–9 autosomal pairs showed CMA3-positive blocks depending on the species, while DAPI-positive blocks were detected only in Coprophanaeusdardanus. FISH mapping revealed 5S rDNA signals in one autosomal pair in each species, whereas the number of pairs with 18S rDNA signals varied from 1–8 between the Coprophanaeus species. Our results suggest that distinct genetic mechanisms had been involved in the karyotype evolution of Coprophanaeus species, i.e. mechanisms maintaining the conserved number of 5S rDNA clusters and those generating variability in the amount of heterochromatin, sex chromosome forms, and distribution of 18S rDNA clusters.

Angus RB, Wilson CJ, Mann DJ: A chromosomal analysis of 15 species of Gymnopleurini and Coprini (Coleoptera: Scarabaeidae). Tijdschr Entomol 150:201–211 (2007).
Biémont C, Vieira C: Genetics: junk DNA as an evolutionary force. Nature 443:521–524 (2006).
Bione EG, Camparoto ML, Simões ZL: A study of the constitutive heterochromatin and nucleolus organizer regions of Isocopris inhiata and Diabroctis mimas (Coleoptera: Scarabaeidae, Scarabaeinae) using C-banding, AgNO3 staining and FISH techniques. Gen Mol Biol 28:111–116 (2005a).
Bione EG, Moura RC, Carvalho R, Souza MJ: Karyotype, C-banding pattern, NOR location and FISH study of five Scarabaeidae (Coleoptera) species. Gen Mol Biol 28:376–381 (2005b).
Cabral-de-Mello DC, Oliveira SG, Ramos IC, Moura RC: Karyotype differentiation patterns in species of the subfamily Scarabaeinae (Scarabaeidae, Coleoptera). Micron 39:1243–1250 (2008).
Cabral-de-Mello DC, Moura RC, Martins C: Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104:393–400 (2010a).
Cabral-de-Mello DC, Moura RC, Souza MJ: Amplification of repetitive DNA and origin of a rare chromosomal sex bivalent in Deltochilum (Calhyboma) verruciferum (Coleoptera, Scarabaeidae). Genetica 138:191–195 (2010b).
Cabral-de-Mello, Moura DC, Carvalho R, Souza MJ: Cytogenetic analysis of two related Deltochilum (Coleoptera, Scarabaeidae) species: diploid number reduction, extensive heterochromatin addition and differentiation. Micron 41:112–117 (2010c).
Cabral-de-Mello DC, Oliveira SG, Moura RC, Martins C: Chromosomal organization of 18S and 5S rRNA and H3 histone genes in Scarabaeinae coleopterans: insights on the evolutionary dynamics of multigene families and heterochromatin. BMC Genet 12:88 (2011a).
Cabral-de-Mello DC, Moura RC, Martins C: Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenet Genome Res 134:127–135 (2011b).
Charlesworth B, Snlegowskl P, Stephan W: The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220 (1994).
Colomba MS, Monteresino E, Vitturi R, Zunino M: Characterization of mitotic chromosomes of the scarab beetles Glyphoderus sterquilinus (Westwood) and Bubas bison (L.) (Coleoptera: Scarabaeidae) using conventional and banding techniques. Biol Zentralbl 115:58–70 (1996).
Colomba MS, Vitturi R, Zunino M: Karyotype analysis, banding, and fluorescent in situ hybridization in the scarab beetle Gymnopleurus sturmi McLeay (Coleoptera Scarabaeoidea: Scarabaeidae). J Hered 91:260–264 (2000).
Colomba MS, Vitturi R, Libertini A, Gregorini A, Zunino M: Heterochromatin of the scarab beetle, Bubas bison (Coleoptera: Scarabaeidae) II. Evidence for AT-rich compartmentalization and a high amount of rDNA copies. Micron 37:47–51 (2006).
Dover G: Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165 (1986).
Dover G: Molecular drive. Trends Genet 18:587–589 (2002).
Edmonds WD: The immature stages of Phanaeus (Coprophanaeus) jasius Oliver and Phanaeus (Metallophanaeus) saphirinus sturm (Coleoptera: Scarabaeidae). Coleopt Bull 21:97–105 (1967).
Edmonds WD: Comparative skeletal morphology, systematics and evolution of the Phanaeine dung beetles (Coleoptera: Scarabaeidae). Kans Univ Sci Bull 49:731–874 (1972).
Edmonds WD, Zidek JA: Taxonomic review of the neotropical genus Coprophanaeus Olsoufieff, 1924 (Coleoptera: Scarabaeidae, Scarabaeinae). Insecta Mundi 129:1–111 (2010).
Ferreira A, Cella D, Tardivo JR, Virkki N: Two pairs of chromosomes: a new low record for Coleoptera. Braz J Genet 2:231–239 (1984).
Fujiwara M, Inafuku J, Takeda A, Watanabe A, Fujiwara A, et al: Molecular organization of 5S rDNA in bitterlings (Cyprinidae). Genetica 135:355–365 (2009).
Galián J, Hogan JE, Vogler AP: The origin of multiple sex chromosomes in tiger beetles. Mol Biol Evol 19:1792–1796 (2002).
Hancock JM: Microsatellites and other simple sequences: genomic context and mutational mechanisms, in Goldstein DB, Schlötterer C (eds): Microsatellites, pp 1–8 (Oxford University Press, Oxford 1999).
Hanski I, Cambefort Y: Dung Beetle Ecology, pp. 481 (Princeton University Press, Princeton 1991).
Juan C, Pons J, Petitpierre E: Localization of tandemly repeated DNA sequences in beetle chromosomes by fluorescent in situ hybridization. Chromosome Res 1:167–174 (1993).
Landais I, Chavigny P, Castagnone C, Pizzol J, Abad P, Vanlerberghe-Masutti F: Characterization of a highly conserved satellite DNA from the parasitoid wasp Trichogramma brassicae. Gene 255:65–73 (2000).
Li Y, Korol AB, Fahima T, Beiles A, Nevo E: Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465 (2002).
Lohe AR, Roberts PA: Evolution of DNA in heterochromatin: the Drosophila melanogaster sibling species subgroup as a resource. Genetica 109:125–130 (2000).
Loreto V, Cabrero J, López-León MD, Camacho JPM, Souza MJ: Possible autosomal origin of macro B chromosomes in two grasshopper species. Chromosome Res 16:233–241 (2008).
Louzada JN: Scarabaeinae (Coleoptera: Scarabaeidae) detritívoros em ecossistemas tropicais: biodiversidade e serviços ambientais, in Moreira FMS, Siqueira JO, Brussaard L (eds): Biodiversidade do Solo em Ecossistemas Brasileiros, pp 309–332 (UFLA, Lavras 2008).
Martins C, Galletti Jr PM: Two rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica 111:439–446 (2001).
Martins VG: The chromosome of five species of Scarabaeidae (Polyphaga, Coleoptera). Naturalia 19:89–96 (1994).
Mesa A, Fontanetti C: The chromosomes of a primitive species of beetle: Ytu zeus (Coleoptera, Myxophaga, Torridincolidae). Acad Nat Phil 137:102–105 (1985).
Montgomery EA, Huang SM, Langley CH, Judd BH: Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129:1085–1098 (1991).
Moura RC, Souza MJ, Melo NF, Lira-Neto AC: Karyotypic characterization of representatives from Melolonthinae (Coleoptera: Scarabaeidae): karyotypic analysis, banding and fluorescent in situ hybridization (FISH). Hereditas 138:200–206 (2003).
Nowak R: Mining treasures from junk DNA. Science 263:608–610 (1994).
Oliveira SG, Moura RC, Silva AEB, Souza MJ: Cytogenetic analysis of two Coprophanaeus species (Scarabaeidae) revealing wide constitutive heterochromatin variability and the largest number of 45S rDNA sites among Coleoptera. Micron 41:960–965 (2010).
Palomeque T, Lorite P: Satellite DNA in insects: a review. Heredity 100:564–573 (2008).
Petrov DA, Aminetzach YT, Davis JC, Bensasson D, Hirsh AE: Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila. Mol Biol Evol 20:880–892 (2003).
Philips TK, Edmonds WD, Scholtz CH: A phylogenetic analysis of the New World tribe Phanaeini (Coleoptera: Scarabaeidae: Scarabaeinae): hypotheses on relationships and origins. Insect Syst Evol 35:43–63 (2004).
Puerma E, Acosta MJ, Barragán MJ, Martínez S, Marchal JÁ, et al: The karyotype and 5S rRNA genes from Spanish individuals of the bat species Rhinolophus hipposideros (Rhinolophidae; Chiroptera). Genetica 134:287–295 (2008).
Raska I, Koberna K, Malinsky J, Fidlerová H, Masata M: The nucleolus and transcription of ribosomal genes. Biol Cell 96:579–594 (2004).
Ribeiro LF, Fernandez MA: Molecular characterization of the 5S ribosomal gene of the Bradysia hygida (Diptera: Sciaridae). Genetica 122:253–260 (2004).
Rooney AP, Ward TJ: Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci 102:5084–5089 (2005).
Roussel P, Hernandez-Verdun D: Identification of Ag-NOR proteins, markers of proliferation related to ribosomal genes activity. Exp Cell Res 214:465–472 (1994).
Rozék M, Lachowska D, Petitpierre E, Holecová M: C-bands on chromosomes of 32 beetles species (Coleoptera: Elateridae, Cantharidae, Oedemeridae, Cerambycidae, Anthicidae, Chrysomelidae, Attelabidae and Curculionidae). Hereditas 140:161–170 (2004).
Sánchez-Gea JF, Serrano J, Gálian J: Variability in rDNA loci in Iberian species of the genus Zabrus (Coleoptera: Carabidae) detected by fluorescence in situ hybridization. Genome 43:22–28 (2000).
Schneider MC, Rosa SP, Almeida MC, Costa C, Cella DM: Chromosomal similarities and differences among four Neotropical Elateridae (Conoderini and Pyrophorini) and other related species, with comments on the NOR patterns in Coleoptera. J Zool Syst Evol Res 45:308–316 (2007).
Schweizer D: Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324 (1976).
Silva GM, Bione EG, Cabral-de-Mello DC, Moura RC, Simões ZL, Souza MJ: Comparative cytogenetics of three species of Dichotomius (Coleoptera, Scarabaeidae). Genet Mol Biol 32:276–280 (2009).
Smith SG, Virkki N: Coleoptera, in John B (ed): Animal Cytogenetics, pp 366 (Borntraeger, Berlin 1978).
Sumner AT: A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306 (1972).
Sumner AT: Chromosomes: Organization and Function, pp 287 (Blackwell Publishing, Oxford 2003).
Ugarkovic D, Petitpierre E, Juan C, Plohl M: Satellite DNAs in tenebrionid species: structure, organization and evolution. Croat Chem Acta 68:627–638 (1995).
Vaz-de-Mello FZ: Estado atual de conhecimento dos Scarabaeidae s. str. (Coleoptera: Scarabaeoidea) do Brasil, in Martin-Piera F, Morrone JJ, Melic A (eds): Hacia un Proyecto CYTED para el inventario y estimación de la diversidad Entomológica en Iberoamérica: PrIBES-2000, pp. 183–195, 326 (Sociedad Entomológica Aragonesa & CYTED, m3m: Monografias Tercer Milenio, Zaragoza 2000).
Vidal OR: Coleoptera from Argentina. Genetica 65:235–239 (1984).
Virkki N: Banding of Oedionychina (Coleoptera, Alticinae) chromosomes. C- and Ag-bands. J Agr Univ Puerto Rico 67:221–255 (1983).
Vitturi R, Colomba MS, Barbieri R, Zunino M: Ribosomal DNA location in the scarab beetle Thorectes intermedius (Costa) (Coleoptera: Geotrupidae) using banding and fluorescent in-situ hybridization. Chromosome Res 7:255–260 (1999).
Vitturi R, Colomba MS, Pirrone AM, Mandrioli M: rDNA (18S-28S and 5S) colocalization and linkage between ribosomal genes (TTAGGG)n telomeric sequence in the earthworm, Octodrillus complanatus (Annelida: Oligochaeta: Lumbricidae), revealed by single- and double-color FISH. J Hered 93:279–282 (2002).
Vitturi R, Colomba MS, Volpe N, Lannino A, Zunino M: Evidence for male X0 sex-chromosome system in Pentodon bidens punctatum (Coleoptera: Scarabaeoidea: Scarabaeidae) with X-linked 18S–28S clusters. Genes Genet Syst 78:427–432 (2003).
White MJ: Animal Cytology and Evolution, ed 3, (Cambridge University, London 1973).
Wilson CJ, Angus RB: A chromosomal analysis of ten European species of Aphodius Illiger, subgenera Acrossus Mulsant, Nimbus Muldant & Rey and Chilothorax Motschulsky (Coleoptera: Aphodiidae). Koleopt Rdsch 74:367–374 (2004).
Wilson CJ, Angus RB: A chromosomal analysis of 21 species of Oniticellini and Onthophagini (Coleoptera: Scarabaeidae). Tijdschr Entomol 148:63–76 (2005).
Wilson CJ, Angus RB: A chromosomal analysis of eight species of Aphodius Illiger, subgenera Agiolinus Schmidt, Agrilinus Mulsant & Rey and Planolinus Mulsant & Rey (Coleoptera: Aphodiidae). Proc Rus Entomol Soc St Petersburg 77:28–33 (2006).
Yadav JS, Pillai, RK, Karamje ET: Chromosome numbers of Scarabaeidae (Polyphaga: Coleoptera). Coleopt Bull 33:309–318 (1979).
Yadav JS, Pillai RK, Yadav AS: Karyotypic study of some scarab beetles with comments on phylogeny (Coleoptera: Scarabaeoidea). Elytron 4:41–51 (1990).
Zinic SJ, Ugarjovik D, Cornudella L, Plohl M: A novel interspersed type of organization of satellite DNAs in Tribolium madens heterochromatin. Chromosome Res 8:201–212 (2000).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.