Cetartiodactyla comprises Artiodactyla (even-toed ungulates) and Cetacea (whales, dolphins and porpoises). Artiodactyla is a large taxon represented by about 200 living species ranked in 10 families. Cetacea are classified into 13 families with almost 80 species. Many publications concerning karyotypic relationships in Cetartiodactyla have been published in previous decades. Formerly, the karyotypes of closely related species were compared by chromosome banding. Introduction of molecular cytogenetic methods facilitated comparative mapping between species with highly rearranged karyotypes and distantly related species. Such information is a prerequisite for the understanding of karyotypic phylogeny and the reconstruction of the karyotypes of common ancestors. This study summarizes the data on chromosome evolution in Cetartiodactyla, mainly derived from molecular cytogenetic studies. Traditionally, phylogenetic relationships of most groups have been estimated using morphological data. However, the results of some molecular studies of mammalian phylogeny are discordant with traditional conceptions of phylogeny. Cetartiodactyls provide several examples of incongruence between traditional morphological and molecular data. Such cases of conflict include the relationships of the major clades of artiodactyls, the relationships among the extant families of the suborder Ruminantia or the phylogeny of the family Bovidae. The most unexpected aspect of the molecular phylogeny was the recognition that Cetacea is a deeply nested member of Artiodactyla. The largest living order of terrestrial hoofed mammals is the even-toed hoofed mammals, or Artiodactyla. The artiodactyls are composed of over 190 living species including pigs, peccaries, hippos, camels, llamas, deer, pronghorns, giraffes, sheep, goats, cattle and antelopes. Cetacea is an order of wholly aquatic mammals, which include whales, dolphins and porpoises. Cetartiodactyla has become the generally accepted name for the clade containing both of these orders.

1.
Abril VV, Carnelossi EA, González S, Duarte JM: Elucidating the evolution of the red brocket deer Mazama americana complex (Artiodactyla; Cervidae). Cytogenet Genome Res 128:177–187 (2010).
2.
Adega F, Chaves R, Kofler A, Krausman PR, Masabanda J, et al: High-resolution comparative chromosome painting in the Arizona collared peccary (Pecari tajacu, Tayassuidae): a comparison with the karyotype of pig and sheep. Chromosome Res 14:243–251 (2006).
3.
Avila F, Das PJ, Kutzler M, Owens E, Perelman P, et al: Development and application of molecular tools for camelid cytogenetics. J Hered in press (2012).
4.
Balmus G, Trifonov VA, Biltueva LS, O’Brien PC, Alkalaeva ES, et al: Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Res 15:499–515 (2007).
5.
Benirschke K, Kumamoto AT, Meritt DA: Chromosomes of the Chacoan peccary, Catagonus wagneri (Rusconi). J Hered 76:95–98 (1985).
6.
Bielec PE, Gallagher DS, Womack JE, Busbee DL: Homologies between human and dolphin chromosomes detected by heterologous chromosome painting. Cytogenet Cell Genet 81:18–25 (1998).
7.
Biltueva LS, Yang F, Vorobieva NV, Graphodatsky AS: Comparative map between the domestic pig and dog. Mamm Genome 15:809–818 (2004).
8.
Bonnet A, Thévenon S, Claro F, Gautier M, Hayes H: Cytogenetic comparison between Vietnamese sika deer and cattle: R-banded karyotypes and FISH mapping. Chromosome Res 9:673–687 (2001).
9.
Bonnet-Garnier A, Claro F, Thévenon S, Gautier M, Hayes H: Identification by R-banding and FISH of chromosome arms involved in Robertsonian translocations in several deer species. Chromosome Res 11:649–663 (2003).
10.
Bosma AA: Chromosomal polymorphism and G-Banding patterns in wild boar (Sus scrofa L.) from the Netherlands. Genetica 46:391–399 (1976).
11.
Bosma AA: Chromosomal G-banding pattern in wart hog, Phacochoerus aethiopicus (Suidae, Mammalia) and its implications for systematic position of species. Genetica 49:15–19 (1978).
12.
Bosma AA, Oliver WL, Macdonald AA: The karyotype, including G-banding and C-banding patterns, of the pigmy hog Sus (Porcula) salvanius (Suidae, Mammalia). Genetica 61:99–106 (1983).
13.
Bosma AA, Dehaan NA, Blouch RA, Macdonald AA: Comparative cytogenetic studies in Sus verrucosus, Sus celebensis and Sus scrofa vittatus (Suidae, Mammalia). Genetica 83:189–194 (1991).
14.
Bosma AA, Dehaan NA, Mellink CHM, Yerle M, Zijlstra C: Chromosome homology between the domestic pig and the babirusa (family Suidae) elucidated with the use of porcine painting probes. Cytogenet Cell Genet 75:32–35 (1996).
15.
Bosma AA, de Haan NA, Arkesteijn GJ, Yang F, Yerle M, Zijlstra C: Comparative chromosome painting between the domestic pig (Sus scrofa) and two species of peccary, the collared peccary (Tayassu tajacu) and the white-lipped peccary (T. pecari): a phylogenetic perspective. Cytogenet Genome Res 105:115–121 (2004).
16.
Buckland RA, Evans HJ: Cytogenetic aspects of phylogeny in the Bovidae. I. G-banding. Cytogenet Cell Genet 32:64–71 (1978).
17.
Burkin DJ, Yang F, Broad TE, Wienberg J, Hill DF, Ferguson-Smith MA: Use of the Indian muntjac idiogram to align conserved chromosomal segments in sheep and human genomes by chromosome painting. Genomics 46:143–147 (1997).
18.
Cernohorska H, Kubickova S, Vahala J, Robinson TJ, Rubes J: Cytotypes of Kirk’s dik-dik (Madoqua kirkii, Bovidae) show multiple tandem fusions. Cytogenet Genome Res 132:255–263 (2011).
19.
Cernohorska H, Kubickova S, Vahala J, Rubes J: Molecular insights into X;BTA5 chromosome rearrangements in the tribe Antilopini (Bovidae). Cytogenet Genome Res 136:188–198 (2012).
20.
Chaves R, Santos S, Guedes-Pinto H: Comparative analysis (Hippotragini versus Caprini, Bovidae) of X-chromosome’s constitutive heterochromatin by in situ restriction endonuclease digestion: X-chromosome constitutive heterochromatin evolution. Genetica 121:315–325 (2004).
21.
Chi J, Fu B, Nie W, Wang J, Graphodatsky AS, Yang F: New insights into the karyotypic relationships of Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis). Cytogenet Genome Res 108:310–316 (2005a).
22.
Chi JX, Huang L, Nie W, Wang J, Su B, Yang F: Defining the orientation of the tandem fusions that occurred during the evolution of Indian muntjac chromosomes by BAC mapping. Chromosoma 114:167–172 (2005b).
23.
Chowdhary BP: Cytogenetics and physical chromosome maps, in Rothschild MF, Ruvinsky A (eds): The Genetics of the Pig, pp 199–264 (CABI Publishing, Wallingford 1998).
24.
de Gortari MJ, Freking BA, Cuthbertson RP, Kappes SM, Keele JW, et al: A second-generation linkage map of the sheep genome. Mamm Genome 9:204–209 (1998).
25.
Dementyeva PV, Trifonov VA, Kulemzina AI, Graphodatsky AS: Reconstruction of the putative Cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes. Cytogenet Genome Res 128:228–235 (2010).
26.
Duarte JM, Jorge W: Morphologic and cytogenetic description of the small red brocket (Mazama bororo Duarte, 1996) in Brazil. Mammalia 67:403–410 (2003).
27.
Duarte JM, González S, Maldonado JE: The surprising evolutionary history of South American deer. Mol Phylogenet Evol 49:17–22 (2008).
28.
Fernandez MH, Vrba ES: A complete estimate of the phylogenetic relationships in Ruminantia: a dated species level supertree of the extant ruminants. Biol Rev Camb Philos Soc 80:269–302 (2005).
29.
Fontana F, Rubini M: Chromosomal evolution in Cervidae. Biosystems 24:157–174 (1990).
30.
Froenicke L, Caldés MG, Graphodatsky A, Müller S, Lyons AL, et al: Are molecular cytogenetics and bioinformatics suggesting diverging models of ancestral mammalian genomes? Genome Res 156:311–313 (2006).
31.
Frönicke L, Wienberg J: Comparative chromosome painting defines the high rate of karyotype changes between pigs and bovids. Mamm Genome 12:442–449 (2001).
32.
Frönicke L, Chowdhary BP, Scherthan H, Gustavsson I: A comparative map of the porcine and human genomes demonstrates ZOO-FISH and gene mapping-based chromosomal homologies. Mamm Genome 7:285–290 (1996).
33.
Gallagher DS Jr, Womack JE: Chromosome conservation in the Bovidae. J Hered 83:287–298 (1992).
34.
Gallagher DS Jr, Derr JN, Womack JE: Chromosome conservation among the advanced pecorans and determination of the primitive bovid karyotype. J Hered 85:204–210 (1994).
35.
Gallagher DS Jr, Houck ML, Ryan AM, Womack JE, Kumamoto AT: A karyotypic analysis of the lesser Malay chevrotain, Tragulus javanicus (Artiodactyla: Tragulidae). Chromosome Res 4:545–551 (1996).
36.
Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, et al: Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262 (1996).
37.
Graur D, Higgins DG: Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Mol Biol Evol 11:357–364 (1994).
38.
Groves C, Grubb P: Relationship of living deer, in Wemmer CM (ed): Biology and Management of the Cervidae, pp 21–59 (Smithsonian Institute, Washington 1987).
39.
Groves C, Grubb P: Ungulate Taxonomy (The Johns Hopkins University Press, Baltimore 2011).
40.
Hassanin A, Douzery EJ: Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52:206–228 (2003).
41.
Hsu TC, Benirschke K: An Atlas of Mammalian Chromosomes 1:40 (Springer, New York 1967).
42.
Huang L, Nie W, Wang J, Su W, Yang F: Phylogenomic study of the subfamily Caprinae by cross-species chromosome painting with Chinese muntjac paints. Chromosome Res 13:389–399 (2005).
43.
Huang L, Chi J, Nie W, Wang J, Yang F: Phylogenomics of several deer species revealed by comparative chromosome painting with Chinese muntjac paints. Genetica 127:25–33 (2006a).
44.
Huang L, Chi J, Wang J, Nie W, Su W, Yang F: High-density comparative BAC mapping in the black muntjac (Muntiacus crinifrons): molecular cytogenetic dissection of the origin of MCR 1p+4 in the X1X2Y1Y2Y3 sex chromosome system. Genomics 87:608–615 (2006b).
45.
Huang L, Wang J, Nie W, Su W, Yang F: Tandem chromosome fusions in karyotypic evolution of Muntiacus: evidence from M. feae and M. gongshanensis. Chromosome Res 14:637–647 (2006c).
46.
Huang L, Nesterenko A, Nie W, Wang J, Su W, et al: Karyotypic evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints. Cytogenet Genome Res 122:132–138 (2008).
47.
Huang L, Jing M, Nie W, Robinson TJ, Yang F: Chromosome homologies between tsessebe (Damaliscus lunatus) and Chinese muntjac (Muntiacus reevesi) facilitate tracing the evolutionary history of Damaliscus (Bovidae, Antilopinae, Alcelaphini). Cytogenet Genome Res 132:264–270 (2011).
48.
Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D, Schibler L, et al: Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies Bovinae and Caprinae. Cytogenet Cell Genet 89:171–176 (2000).
49.
Iannuzzi L, Di Meo GP, Perucatti A, Schibler L, Incarnato D, et al: Comparative FISH-mapping in river buffalo and sheep chromosomes: assignment of forty autosomal type I loci from sixteen human chromosomes. Cytogenet Cell Genet 94:43–48 (2001).
50.
Iannuzzi L, King WA, Berardino DD: Chromosome evolution in domestic bovids as revealed by chromosome banding and FISH-mapping techniques. Cytogenet Genome Res 126:49–62 (2009).
51.
ISCNDB 2000: International System for Chromosome Nomenclature of Domestic Bovids. Cytogenet Cell Genet 92:283–299 (2001).
52.
Kim KS, Tanaka K, Ismail DB, Maruyama S, Matsubayashi H, et al: Cytogenetic comparison of the lesser mouse deer (Tragulus javanicus) and the greater mouse deer (T. napu). Caryologia 57:229–243 (2004).
53.
Kulemzina AI, Trifonov VA, Perelman PL, Rubtsova NV, Volobuev V, et al: Cross-species chromosome painting in Cetartiodactyla: reconstructing the karyotype evolution in key phylogenetic lineages. Chromosome Res 17:419–436 (2009).
54.
Kulemzina AI, Yang F, Trifonov VA, Ryder OA, Ferguson-Smith MA, Graphodatsky AS: Chromosome painting in Tragulidae facilitates the reconstruction of Ruminantia ancestral karyotype. Chromosome Res 19:531–539 (2011).
55.
Matthee CA, Burzlaff JD, Taylor JF, Davis SK: Mining the mammalian genome for artiodactyl systematics. Syst Biol 50:367–390 (2001).
56.
Melander Y, Hansen-Melander E: Chromosome studies in African wild pigs (Suidae, Mammalia). Hereditas 92:283–289 (1980).
57.
Muir PD, Semiadi G, Asher GW, Broad TE, Tate ML, Barry TN: Sambar deer (Cervus unicolor) x red deer (C. elaphus) interspecies hybrids. J Hered 88:366–372 (1997).
58.
Murphy WJ, Pringle TH, Tess A, Crider TA, Springer MS, et al: Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413–421 (2007).
59.
Musilova P, Kubickova S, Hornak M, Cernohorska H, Vahala J, Rubes J: Different fusion configurations of evolutionarily conserved segments in karyotypes of Potamochoerus porcus and Phacochoerus africanus. Cytogenet Genome Res 129:305–309 (2010).
60.
Nguyen TT, Aniskin VM, Gerbault-Seureau M, Planton H, Renard JP, et al: Phylogenetic position of the saola (Pseudoryx nghetinhensis) inferred from cytogenetic analysis of eleven species of Bovidae. Cytogenet Genome Res 122:41–54 (2008).
61.
O’Brien SJ, Menninger JC, Nash WG: Atlas of Mammalian Chromosomes (John Wiley & Sons Inc., Hoboken, NJ 2006).
62.
Pagacova E, Cernohorska H, Kubickova S, Vahala J, Rubes J: Centric fusion polymorphism in captive animals of family Bovidae. Conserv Genet 12:71–77 (2011).
63.
Petit P, de Meurichy: On the chromosomes of the okapi. Okapia johnstoni. Ann Genet 29:232–234 (1986).
64.
Pinton P, Schibler L, Cribiu E, Gellin J, Yerle M: Localization of 113 anchor loci in pigs: improvement of the comparative map for humans, pigs, and goats. Mamm Genome 11:306–315 (2000).
65.
Prothero DR, Foss SE: The Evolution of Artiodactyls (The Johns Hopkins University Press, Baltimore 2007).
66.
Randi E, Mucci N, Pierpaoli M, Douzery E: New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proc Biol Sci 265:793–801 (1998).
67.
Randi E, D’Huart JP, Lucchini V, Aman R: Evidence of two genetically deeply divergent species of warthog, Phacochoerus africanus and P. aethiopicus (Artiodactyla: Suiformes) in East Africa. Mamm Biol 67:91–96 (2002).
68.
Rettenberger G, Klett C, Zechner U, Kunz J, Vogel W, Hameister H: Visualization of the conservation of synteny between humans and pigs by heterologous chromosomal painting. Genomics 26:372–378 (1995).
69.
Robinson TJ, Ropiquet A: Examination of hemiplasy, homoplasy and phylogenetic discordance in chromosomal evolution of the Bovidae. Syst Biol 60:439–450 (2011).
70.
Robinson TJ, Harrison WR, Ponce de León FA, Davis SK, Elder FF: A molecular cytogenetic analysis of X chromosome repatterning in the Bovidae: transpositions, inversions, and phylogenetic inference. Cytogenet Cell Genet 80:179–184 (1998).
71.
Ropiquet A, Gerbault-Seureau M, Deuve JL, Gilbert C, Pagacova E, et al: Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggest that Robertsonian translocations are related to interspecific hybridization. Chromosome Res 16:1107–1118 (2008).
72.
Ropiquet A, Hassanin A, Pagacova E, Gerbault-Seureau M, Cernohorska H, et al: A paradox revealed: karyotype evolution in the four-horned antelope occurs by tandem fusion (Mammalia, Bovidae, Tetracerus quadricornis). Chromosome Res 18:277–286 (2010).
73.
Rubes J, Pagacova E, Kopecna O, Kubickova S, Cernohorska H, et al: Karyotype, centric fusion polymorphism and chromosomal aberrations in captive-born mountain reedbuck (Redunca fulvorufula). Cytogenet Genome Res 116:263–268 (2007).
74.
Rubes J, Kubickova S, Pagacova E, Cernohorska H, Berardino DD, et al: Phylogenomic study of spiral-horned antelope by cross-species chromosome painting. Chromosome Res 16:935–947 (2008).
75.
Rubes J, Pinton A, Bonnet-Garnier A, Fillon V, Musilova P, et al: Fluorescence in situ hybridization applied to domestic animal cytogenetics. Cytogenet Genome Res 126:34–48 (2009).
76.
Schmitz A, Oustry A, Vaiman D, Chaput B, Frelat G, Cribiu EP: Comparative karyotype of pig and cattle using whole chromosome painting probes. Hereditas 128:257–263 (1998).
77.
Shi L, Yang F, Kumamoto A: The chromosomes of tufted deer (Elaphodus cephalophus). Cytogenet Cell Genet 56:189–192 (1991).
78.
Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, et al: A deer (subfamily Cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics 160:1587–1597 (2002).
79.
Spaulding M, O’Leary MA, Gatesy J: Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One 4:e7062 (2009).
80.
Su B, Wang YX, Lan H, Wang W, Zhang Y: Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Mol Phylogenet Evol 12:241–249 (1999).
81.
Su B, Wang YX, Wang QS: Mitochondrial DNA sequences imply Anhui musk deer a valid species in genus Moschus. Zool Res 22:169–173 (2001).
82.
Thomsen PD, Hoyheim B, Christensen K: Recent fusion events during evolution of pig chromosomes 3 and 6 identified by comparison with the babirusa karyotype. Cytogenet Cell Genet 73:203–208 (1996).
83.
Tikhonov VN, Troshina AI: Chromosome translocations in the karyotypes of wild boars Sus scrofa L. of European and Asian areas of USSR. Theor Appl Genet 45:304–308 (1975).
84.
Vermeesch JR, De Meurichy W, Van Den Berghe H, Marynen P, Petit P: Differences in the distribution and nature of the interstitial telomeric (TTAGGG)n sequences in the chromosomes of the Giraffidae, okapai (Okapia johnstoni), and giraffe (Giraffa camelopardalis): evidence for ancestral telomeres at the okapi polymorphic rob(5;26) fusion site. Cytogenet Cell Genet 72:310–315 (1996).
85.
Wang YX, Ma SL, Li CY: The taxonomy, distribution and status of forest musk deer in China, in Ohtaishi N, Sheng HL (eds): Deer of China: Biology and Management, pp 22–30 (Elsevier Science, Tokyo 1993).
86.
Wilson DE, Reeder DM: Mammal Species of the World (Johns Hopkins University Press, Baltimore 2005).
87.
Wurster DH, Benirschke K: Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:1364–1366 (1970).
88.
Yang F, Carter NP, Shi L, Ferguson-Smith MA: A comparative study of karyotypes of muntjacs by chromosome painting. Chromosoma 103:642–652 (1995).
89.
Yang F, O’Brien PC, Wienberg J, Neitzel H, Lin CC, Ferguson-Smith MA: Chromosomal evolution of the Chinese muntjac (Muntiacus reevesi). Chromosoma 106:37–43 (1997a).
90.
Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J: Comparative chromosome painting in mammals: human and the Indian muntjac (Muntiacus muntjak vaginalis). Genomics 39:396–401 (1997b).
91.
Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA: Evolution of the black muntjac (Muntiacus crinifrons) karyotype revealed by comparative chromosome painting. Cytogenet Cell Genet 76:159–163 (1997c).
92.
Yang F, O’Brien PC, Wienberg J, Ferguson-Smith MA: A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Chromosome Res 5:109–117 (1997d).
93.
Yong HS: Complete Robertsonian fusion in the Malaysian Lesser Mouse Deer (Tragulus javanicus). Experientia 29:366–367 (1973).
94.
Zhou X, Xu S, Yang Y, Zhou K, Yang G: Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol 61:255–264 (2011).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.