The centromere appears as a single constriction at mitotic metaphase in most eukaryotic chromosomes. Holokinetic chromosomes are the exception to this rule because they do not show any centromeric constrictions. Holokinetic chromosomes are usually forgotten in most reviews about centromeres, despite their presence in a number of animal and plant species. They are generally linked to very intriguing and unusual mechanisms of mitosis and meiosis. Holokinetic chromosomes differ from monocentric chromosomes not only in the extension of the kinetochore plate, but also in many other peculiar karyological features, which could be understood as the ‘holokinetic syndrome’ that is reviewed in detail. Together with holokinetic chromosomes we review neocentromeric activity, a similarly intriguing case of regions able to pull chromosomes towards the poles without showing the main components reported to be essential to centromeric function. A neocentromere is a chromosomal region different from the true centromere in structure, DNA sequence and location, but is able to lead chromosomes to the cell poles in special circumstances. Neocentromeres have been reported in plants and animals showing different features. Both in humans and Drosophila, neocentric activity appears in somatic cells with defective chromosomes lacking a functional centromere. In most cases in plants, neocentromeres appear in chromosomes which have normal centromeres, but are active only during meiosis. Because of examples such as spontaneous or induced neocentromeres and holokinetic chromosomes, it is becoming less surprising that different structures and DNA sequences of centromeres appear in evolution.

1.
Albertson DG, Thomson JN: Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1:15–26 (1993).
2.
Albertson DG, Rose AM, Villeneuve AM: Chromosome organization, mitosis, and meiosis, in Riddle DL, Blumenthal T, Meyer BJ, Priess JR (eds): C. elegans II, pp 47–78 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1997).
3.
Allshire RC: Centromeres, checkpoints and chromatid cohesion. Curr Opin Genet Dev 7:264–273 (1997).
4.
Amor DJ, Choo KH: Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 71:695–714 (2002).
5.
Ananiev EV, Phillips RL, Rines HW: Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci USA 95:13073–13078 (1998a).
6.
Ananiev EV, Phillips RL, Rines HW: A knob-associated tandem repeat in maize capable of forming fold-back DNA segments: are chromosome knobs megatransposons? Proc Natl Acad Sci USA 95:10785–10790 (1998b).
7.
Aragón-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G: A cereal centromeric sequence. Chromosoma 105:261–268 (1996).
8.
Bedbrook JR, Gerlach W, Thompson R, Jones J, Flavell RB: A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560 (1980).
9.
Black BE, Basset EA: The histone variant CENP-A and centromere specification. Curr Opin Cell Biol 20:91–100 (2008).
10.
Blunden R, Wilkes TJ, Forster JW, Jiménez MM, Sandery MJ, et al: Identification of the E3900 family, a 2nd family of rye chromosome B-specific repeated sequences. Genome 36:706–711 (1993).
11.
Bokhari FS, Godward MBE: The ultrastructure of the diffuse kinetochore in Luzula nivea. Chromosoma 79:125–136 (1980).
12.
Bongiorni S, Fiorenzo P, Pippoletti D, Prantera G: Inverted meiosis and meiotic drive in mealybugs. Chromosoma 112:331–341 (2004).
13.
Braselton JP: The ultrastructure of meiotic kinetochores of Luzula. Chromosoma 82:143–151 (1981).
14.
Carvalho A, Guedes-Pinto H, Heslop-Harrison JS, Lima-Brito J: Wheat neocentromeres found in F1 Triticale × Tritordeum hybrids (AABBRHch) after 5-azacytidine treatment. Plant Mol Biol Rep 26:46–52 (2008).
15.
Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, et al: Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704 (2002).
16.
Choo KH: Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet 61:1225–1233 (1997).
17.
Choo KH: Turning on the centromere. Nat Genet 18:3–4 (1998).
18.
Choo KH: Centromerization. Trends Cell Biol 10:182–188 (2000).
19.
Clayton L, Lloyd CW: The relationship between the division plane and spindle geometry in Allium cells treated with CIPC and griseofulvin: an anti-tubulin study. Eur J Cell Bio 34:248–253 (1984).
20.
Comings DE, Okada TA: Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis. Chromosoma 37:177–192 (1972).
21.
Cuadrado A, Ceoloni C, Jouve N: Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome 38:1061–1069 (1995).
22.
Da Silva CRM, González-Elizondo MS, Vanzela ALL: Reduction of chromosome number in Eleocharis subarticulata (Cyperaceae) by multiple translocations. Bot J Linn Soc 149:457–464 (2005).
23.
Dalal Y, Furuyama T, Vermaak D, Henikoff S: Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci USA 104:15974–15981 (2007).
24.
Dawe RK, Cande WZ: Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc Natl Acad Sci USA 93:8512–8517 (1996).
25.
Dawe RK, Hiatt EN: Plant neocentromeres. Fast, focused, and driven. Chromosome Res 12:655–669 (2004).
26.
Dawe RK, Reed LM, Yu HG, Muszynski MG, Hiatt EN: A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell 11:1227–1238 (1999).
27.
De Carvalho CE, Zaaijer S, Sarit S, Gu Y, Schumacher JM, et al: LAB-1 antagonizes the Aurora B kinase in C. elegans. Genes Dev 22:2869–2885 (2008).
28.
Dej KJ, Orr-Weaver TL: Separation anxiety at the centromere. Trends Cell Biol 10:392–399 (2000).
29.
Dong F, Miller JT, Jackson SA, Wang GL, Ronald PC, Jiang J: Rice (Oryza sativa) centromeric regions consist of complex DNA. Proc Natl Acad Sci USA 95:8135–8140 (1998).
30.
Du Sart D, Cancilla MR, Earle E, Mao J, Saffery R, et al: A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153 (1997).
31.
Eto M: Organophosphorus Pesticides: Organic and Biological Chemistry (CRC Press, Boca Raton 1974).
32.
Francki MG: Identification of Bilby, a diverged centromeric Ty1-copia retrotransposon family from cereal rye (Secale cereale L.). Genome 44:266–274 (2001).
33.
Giménez-Abián MI, Giménez-Martín C, Navarrete MH, De la Torre C: Microtubular structures developed in response to a carbamate hebicide in plant mitosis. Protoplasma 200:65–70 (1997).
34.
Goday C, Pimpinelli S: Centromere organization in meiotic chromosomes of Parascarisunivalens. Chromosoma 98:160–166 (1989).
35.
González-García JM, Benavente R, Rufas JS: Cytochemical and immunocytochemical characterization of kinetochores on the holocentric chromosomes of Graphosoma italicum. Eur J Cell Biol 70:352–360 (1996a).
36.
González-García JM, Antonio C, Suja JA, Rufas JS: Meiosis in holocentric chromosomes: kinetic activity is randomly restricted to the chromatid ends of sex univalents in Graphosomaitalicum (Heteroptera). Chromosome Res 4:124–132 (1996b).
37.
González-García M, González-Sánchez M, Puertas MJ: The high variability of subtelomeric heterochromatin and connections between nonhomologous chromosomes, suggest frequent ectopic recombination in rye meiocytes. Cytogenet Genome Res 115:189–185 (2006).
38.
González-Sánchez M, González-García M, Vega J, Rosato M, Cuacos M, Puertas M: Meiotic loss of the B chromosome of maize is influenced by the B univalent co-orientation and the TR-1 knob constitution of the A chromosomes. Cytogenet Genome Res 119:282–290 (2007).
39.
Guerra M, García MA: Heterochromatin and rDNA sites distribution in the holocentric chromosomes of Cuscuta approximata Bab. (Convolvulaceae). Genome 47:134–140 (2004).
40.
Guerra M, Brasileiro-Vidal AC, Arana P, Puertas MJ: Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica 126:33–41 (2006).
41.
Haizel T, Lim YK, Leitch AR, Moore G: Molecular analysis of holocentric centromeres of Luzula species. Cytogenet Genome Res 109:134–143 (2005).
42.
Hayward MD: Genetic control of neocentric activity in rye. Heredity 17:439–441 (1962).
43.
Heneen WK: Chromosome morphology in inbred rye. Hereditas 48:182–200 (1962).
44.
Henikoff S, Ahmad K, Platero JS, Van Steensel B: Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721 (2000).
45.
Hepler PK, Jackson WT: Isopropyl N-phenylcarbamate affects spindle microtubule orientation in dividing endosperm cells of Haemanthus katherinae Baker. J Cell Sci 5:727–743 (1969).
46.
Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, et al: Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochore. Dev Cell 10:303–315 (2006).
47.
Hoffman JC, Vaughn KC: Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179:16–25 (1994).
48.
Houben A, Schubert I: DNA and proteins of plant centromeres. Curr Opin Plant Dev 6:554–560 (2003).
49.
Houben A, Kynast RG, Heim U, Hermann H, Jones RN, Forster JW: Molecular cytogenetic characterisation of the terminal heterochromatic segment of the B chromosome of rye (Secale cereale). Chromosoma 105:97–103 (1996).
50.
Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, et al: Phosphorylation of histone H3 in plants – a dynamic affair. Biochim Biophys Acta 1769:308–315 (2007).
51.
Howe M, McDonald KL, Albertson DG, Meyer BJ: HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes. J Cell Biol 153:1227–1238 (2001).
52.
Hughes SE, Guilliland WD, Cotitta JL, Takeo S, Collins KA, et al: Heterochromatic threads connect oscillating chromosomes during prometaphase I in Drosophila oocytes. PLOS Genetics 5:222–235 (2009).
53.
Hughes-Schrader S, Schrader F: The kinetochore of the Hemiptera. Chromosoma 12:327–350 (1961).
54.
Jiang J, Birchler JA, Parrott WA, Dawe RK: A molecular view of plant centromeres. Trends Plant Sci 8:570–575 (2003).
55.
Jones RN, González-Sánchez M, González-García M, Vega J, Rosato M, Puertas MJ: Chromosomes with a life of their own, in Puertas MJ, Naranjo T (eds): Review in Plant Cytogenetics. Cytogenet Genome Res 120:265–280 (2008).
56.
Karpen GH, Allshire RC: The case for epigenetic effects on centromere identity and function. Trends Genet 13:489–496 (1997).
57.
Katterman G: Ein neuer Karyotyp bei Roggen. Chromosoma 1:284–299 (1939).
58.
Kavander T, Viinikka Y: Neocentric activity in open-pollinated cultivars of rye. Hereditas 107:1–4 (1987).
59.
Lamb JC, Yu W, Han F, Birchler JA: Plant Centromeres, in Volff J-N (ed): Plant Genomes. Genome Dynamics, vol 4, pp 95–107 (Karger, Basel 2008).
60.
Langdon T, Seago C, Jones RN, Ougham H, Thomas H, et al: De novo evolution of satellite DNA on the rye B chromosome. Genetics 154:869–884 (2000a).
61.
Langdon T, Seago C, Mende M, Leggett M, Thomas H, et al: Retrotransposon evolution in diverse plant genomes. Genetics 156:313–325 (2000b).
62.
Levan A: Studies on the meiotic mechanism of haploid rye. Hereditas 28:177–211 (1942).
63.
Lozzia ME, Andrada AR, Páez VA, Toranzo MI, Cristóbal ME: Cromosomas holocéntricos en Cuscuta parodiana Yunckler (subgen. Grammica). Lilloa 45:87–88 (2009).
64.
Luceño M, Vanzela ALL, Guerra M: Cytotaxonomic studies in Brazilian Rhynchospora (Cyperaceae), a genus exhibiting holocentric chromosomes. Can J Bot 76:440–449 (1998).
65.
Maggert KA, Karpen GH: The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158:1615–1628 (2001).
66.
Malheiros N, Castro D, Câmara A: Cromosomas sem centrómero localizado. O caso de Luzula purpurea Link. Agron Lusit 9:51–74 (1947).
67.
Manzanero S, Puertas MJ: Rye terminal neocentromeres: characterization of the underlying DNA and chromatin structure. Chromosoma 111:408–415 (2003).
68.
Manzanero S, Puertas MJ, Jiménez G, Vega JM: Neocentric activity of rye 5RL chromosome in wheat. Chromosome Res 8:543–554 (2000).
69.
Manzanero S, Vega JM, Houben A, Puertas MJ: Characterization of the constriction with neocentric activity of 5RL chromosome in wheat. Chromosoma 111:228–235 (2002).
70.
Marshall OJ, Chueh AC, Wong LH, Choo KH: Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am J Hum Genet 82:261–282 (2008).
71.
McIntyre CL, Pereira S, Moran LB, Appels R: New Secale cereale (rye) derivatives for the detection of rye chromosome segments in wheat. Genome 33:317–323 (1990).
72.
Mello MLS, Recco-Pimentel SM: Response to banding and Hoeschst 33258 treatment in chromocentres of the malpighian tubule cells of Triatoma infestans. Cytobios 52:175–184 (1987).
73.
Mola LM, Papeschi AG: Holokinetic chromosomes at a glance. J Basic Appl Genet 17:17–33 (2006).
74.
Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR: Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc Natl Acad Sci USA 7:3599–3603 (1990).
75.
Monen J, Maddox PS, Hyndman F, Oegema K, Desai A: Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nature Cell Biol 7:1248–1262 (2005).
76.
Moore LL, Morrison M, Roth MB: HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosomes in Caenorhabditis elegans. J Cell Biol 147:471–479 (1999).
77.
Morris CA, Moazed D: Centromere assembly and propagation. Cell 128:647–650 (2007).
78.
Mukai Y, Friebe B, Gill BS: Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of ‘Imperial’ rye chromosomes added to ‘Chinese Spring’ wheat. Jpn J Genet 67:233–237 (1992).
79.
Murphy TD, Karpen GH: Localization of centromere functions in a Drosophila minichromosome. Cell 82:599–610 (1995).
80.
Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, et al: Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770 (2003).
81.
Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, et al: Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145 (2004).
82.
Nagaki K, Kashihara K, Murata M: Visualization of diffuse centromeres with centromere-specific Histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:1886–1893 (2005).
83.
Nasuda S, Hudakova S, Schubert I, Houben A, Endo TR: Stable barley chromosomes without centromeric repeats. Proc Nat Acad Sci 102:9842–9847 (2005).
84.
Nordenskiöld H: Tetrad analysis and the course of meiosis in three hybrids of Luzula campestris. Hereditas 47:203–238 (1962a).
85.
Nordenskiöld H: Studies of meiosis in Luzula purpurea. Hereditas 48:503–519 (1962b).
86.
Oegema K, Desai A, Rybina S, Kirkham M, Hyman AA: Functional analysis of kinetochore assembly in Caenorhabditis elegans. J Cell Biol 153:1209–1225 (2001).
87.
Östergren G, Prakken R: Behavior on the spindle of actively mobile chromosome ends of rye. Hereditas 32:473–494 (1946).
88.
Palmer DK, O’Day K, Trong HL, Charbonneau H, Margolis RL: Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci USA 88:3734–3738 (1991).
89.
Panchenko T, Black BE: The epigenetic basis for centromere identity, in Ugarkovic D (ed): Centromere Structure and Evolution. Prog Mol Subcell Biol 48:2–32 (2009).
90.
Pazy B: Supernumerary chromosomes and their behaviour in meiosis of the holocentric Cuscuta babylonica Choisy. Bot J Linn Soc 123:173–176 (1997).
91.
Pazy B, Plitmann U: Persisting demibivalents: a unique meiotic behaviour in Cuscuta babylonica Choisy. Genome 29:62–66 (1987).
92.
Pazy B, Plitmann U: Chromosome divergence in the genus Cuscuta and its systematics implications. Caryologia 48:173–180 (1995).
93.
Peacock WJ, Dennis ES, Rhoades MM, Pryor AJ: Highly repeated DNA sequence limited to knob heterochromatin in maize. Proc Natl Acad Sci USA 78:4490–4494 (1981).
94.
Pérez R, Panzera F, Page J, Suja JA, Rufas JS: Meiotic behaviour of holocentric chromosomes: orientation and segregation of autosomes in Triatoma infestans (Heteroptera). Chromosome Res 5:47–56 (1997).
95.
Pérez R, Rufas JS, Suja JA, Page J, Panzera F: Meiosis in holocentric chromosomes: orientation and segregation of an autosome and sex chromosomes in Triatoma infestans (Heteroptera). Chromosome Res 8:17–25 (2000).
96.
Prakken R, Müntzing A: A meiotic peculiarity in rye, simulating a terminal centromere. Hereditas 28:441–482 (1942).
97.
Puertas MJ, García-Chico R, Sotillo E, González-Sánchez M, Manzanero S: Movement ability of rye terminal neocentromeres. Cytogenet Genome Res 109:120–127 (2005).
98.
Raikov IB: The Protozoan Nucleus. Morphology and Evolution (Springer Verlag, Berlin 1982).
99.
Rees H: Genotypic control of chromosome behavior in rye. I. Inbred lines. Heredity 9:93–115 (1955).
100.
Rhoades MM: Preferential segregation in maize, in Gowen JW (ed): Heterosis, pp 66–80 (Iowa State College Press, Ames 1952).
101.
Rhoades MM, Vilkomerson H: On the anaphase movement of chromosomes. Proc Natl Acad Sci USA 28:433–443 (1942).
102.
Richards EJ, Ausubel FM: Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127–136 (1988).
103.
Richards EJ, Dawe RK: Plant centromeres: structure and control. Curr Opin Plant Biol 1:130–135 (1998).
104.
Rieder CL, Salmon ED: The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol 8:310–318 (1998).
105.
Rieder CL, Schultz A, Cole R, Sluder G: Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol 127:1301–1310 (1994).
106.
Roalson EH, McCubbin AG, Whitkus R: Chromosome evolution in Cyperales. Aliso 23:62–71 (2007).
107.
Saffery R, Irvine DV, Griffiths B, Kalitsis P, Wordeman L, Choo KH: Human centromeres and neocentromeres show identical distribution patterns of over 20 functionally important kinetochore associated proteins. Hum Mol Genet 9:175–185 (2000).
108.
Sandery MJ, Forster JW, Blunden R, Jones RN: Identification of a family of repeated sequences on the rye B chromosome. Genome 33:908–913 (1990).
109.
Santaguida S, Musacchio A: The life and miracles of kinetochores. EMBO J 28:2511–2531 (2009).
110.
Schlegel R: Neocentric activity in chromosome 5R of rye revealed by haploidy. Hereditas 107:2825–2836 (1987).
111.
Sheikh AS, Kondo K: Differential staining with orcein, Giemsa, CMA and DAPI for comparative chromosome study of 12 species of Australian Drosera (Droseraceae). Am J Bot 82:1278–1286 (1995).
112.
Suja JA, del Cerro AL, Page J, Rufas JS, Santos JL: Meiotic sister chromatid cohesion in holocentric sex chromosomes of three heteropteran species is maintained in absence of axial elements. Chromosoma 109:35–43 (2000).
113.
Sullivan BA, Blower MD, Karpen GH: Determining centromere identity: cyclical stories and forking paths. Nature Rev Genet 2:584–596 (2001).
114.
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S: Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066 (2002).
115.
Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK: Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res 124:228–238 (2009).
116.
Vanzela ALL, Guerra M: Heterochromatin differentiation in holocentric chromosomes of Rhynchospora (Cyperaceae). Genet Mol Biol 23:453–456 (2000).
117.
Vanzela ALL, Cuadrado A, Jouve N, Luceño M, Guerra M: Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Res 6:345–349 (1998).
118.
Vershinin AV, Schwarzacher T, Heslop-Harrison JS: The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell 7:1823–1833 (1995).
119.
Viera A, Page J, Rufas JS: Inverted meiosis: the true bugs as a model to study. Genome Dynamics 5:137–156 (2009).
120.
Viinikka Y: Identification of the chromosomes showing neocentric activity in rye. Theor Appl Genet 70:66–71 (1985).
121.
Viinikka Y, Kavander T: C-band polymorphism in the inbred lines showing neocentric activity in rye. Hereditas 104:203–207 (1986).
122.
Villasante A, Abad JP, Méndez-Lago M: Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc Natl Acad Sci 104:10542–10547 (2007)
123.
Voullaire LE, Slater HR, Petrovic V, Choo KH: A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet 52:1153–1163 (1993).
124.
Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, et al: Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904 (1997).
125.
Wignall SM, Villeneuve AM: Lateral microtubules bundles promote chromosome alignment during acentrosomal oocyte meiosis. Nature Cell Biol 11:839–844 (2009).
126.
Williams BC, Murphy TD, Goldberg ML, Karpen GH: Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet 18:30–37 (1998).
127.
Wrensch DL, Kethley JB, Norton RA: Cytogenetics of holokinetic chromosomes and inverted meiosis: keys to the evolutionary success of mites, with generalizations on eukaryotes, in Houck MA (ed): Mites: Ecological and Evolutionary Analyses of Life-Story Patterns, pp 282–342 (Chapman and Hall, New York 1994).
128.
Yemets A, Stelmakh O, Blume YB: Effects of the herbicide isopropyl-N-carbamate on microtubules and MTOCs in lines of Nicotiana sylvestris resistant and sensitive to its action. Cell Biol Int 32:623–629 (2008).
129.
Young DH, Lewandowsky V: Covalent binding of the benzamide RH-4032 to tubulin in suspension-cultured tobacco cells and its application in cell-based competitive-binding assay. Plant Physiol 124:115–124 (2000).
130.
Yu HG, Hiatt EN, Chan A, Sweeney M, Dawe RK: Neocentromere-mediated chromosome movement in maize. J Cell Biol 139:831–840 (1997).
131.
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, et al: Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836 (2002).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.