Snakes are among the most successful groups of reptiles, numbering about 3,000 extant species. In spite of centuries of comparative anatomical and morphological studies, many aspects of snake systematics remain unsolved. To better understand the evolution and diversity of genomic characteristics in Serpentes, we analyzed online sequence data of mitochondrial and nuclear genes, as well as cytogenetic data and reviewed other genomic characteristics such as toxin genes. After the analysis of the whole-genome and chromosomal organization, we find that: (1) cytogenetic comparisons could provide a useful tool to investigate intergeneric and tribal relationships within the extremely diverse neotropical xenodontine snakes; (2) toxin genes could also help to understand snake evolution if special care is taken to choose the sequences because of the difficulty in avoiding paralogs; (3) snake phylogeny based on mitochondrial genome sequences is largely consistent with the relationship obtained using nuclear genes.

1.
Aprea G, Odierna G, Andreone F, Glaw F, Vences M: Unusual karyotype in the Malagasy colubrid snake Mimophis mahfalensis. Amphib-Reptil 24:215–219 (2003).
2.
Aprea G, Gentilli A, Zuffi MAL, Odierna G: The karyology of Vipera aspis, V. atra, V. hugyi, and Cerastes vipera. Amphib-Reptil 27:113–119 (2006).
3.
Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K: Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 32:511–520 (1991).
4.
Batistic RF, Ferrarezzi H, Soma M: O cariótipo de Tropidophis paucisquamis e suas afinidades com outras famílias. Resumos do III Simpósio do Programa Biota/FAPESP Universidade Federal de São Carlos, Nov 2002 at http://www.biota.org.br/publi/banco/index?show+91144174.
5.
Beçak W: Karyotypes, sex chromosomes, and chromosomal evolution in snakes; in Bucherl W, Buckley E, Deulofeu W (eds.): Venomous animals and their venoms Vol 1, pp. 53–95 (Academic Press, New York 1964).
6.
Beçak W: Constituição cromossômica e mecanismo de determinação do sexo em ofídios sul-americanos. I. Aspectos cariotípicos. Mem Inst Butantan 32:37–78 (1965).
7.
Beçak W: Constituição cromossômica e mecanismo de determinação do sexo em ofídios sul-americanos. II. Cromossomos sexuais e evolução do cariótipo. Mem Inst Butantan 33:775–798 (1966).
8.
Beçak W: Evolution and differentiation of sex chromosomes in lower vertebrates. Differentiation (Suppl) 23:3–12 (1983).
9.
Beçak W, Beçak ML: Cytotaxonomy and chromosomal evolution in Serpentes. Cytogenetics (Basel) 8:247–262 (1969).
10.
Beçak ML, Rabello-Gay MN, Beçak W, Soma M, Batistic RF, Trajtengertz I: The W chromosome during the evolution and in sex abnormalities of snakes. DNA content, C-banding, in Olmo E (ed.): Cytogenetics of Amphibians and Reptiles, pp. 221–240 (Birkhäuser Verlag, Basel 1990).
11.
Bickham JW, Baker R: Canalization Model of chromosomal evolution. Bull Carnegie Mus Nat Hist 13:70–84 (1979).
12.
Castoe TA, de Koning AP, Kim HM, Gu W, Noonan BP, et al: Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci USA 106:8986–8991 (2009).
13.
Ching ATC, Rocha MMT, Leme AFP, Pimenta DC, Furtado MFD, et al: Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy’s (venom) gland transcriptome. FEBS Lett 580:4417–4422 (2006).
14.
Chippaux JP, Williams V, White J: Snake venom variability: methods of study, results and interpretation. Toxicon 29:1279–1303 (1991).
15.
Chuman Y, Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, et al: Regional and accelerated molecular evolution in group I snake venom gland phospholipase A2 isozymes. Toxicon 38:449–462 (2000).
16.
Danse JM, Gasparini S, Ménez A: Molecular biology of snake venom phospholipases A2; in Kini M (ed.): Venom Phospholipase A2; Enzymes, pp. 29–71 (John Wiley & Sons Ltd, England 1997).
17.
Darling ACE, Mau B, Blatter FR, Perna NT: Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14:1394–1403 (2004).
18.
Davidson FF, Dennis EA: Evolutionary relationships and implications for the regulation of phospholipase A2 from snake venom to human secreted forms. J Mol Evol 31:228–238 (1990).
19.
Deshimaru M, Ogawa T, Nakashima KI, Nobuhisa I, Chijiwa T, et al: Accelerated evolution of Crotalinae snake venom gland serine proteases. FEBS Lett 397:83–88 (1996).
20.
Dong S, Kumazawa Y: Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features. J Mol Evol 61:12–22 (2005).
21.
Ezaz T, Stiglec R, Veyrunes F, Graves JAM: Relationship between vertebrate ZW and XY sex chromosome systems. Curr Biol 16:R736–R743 (2006).
22.
Ferrarezzi H: Uma sinopse dos gêneros e classificação das Serpentes (Squamata): II. Família Colubridae; in Nascimento EB, Bernardes AT, Cotta GA (eds.): Herpetologia no Brasil, 1, pp. 81–91 (PUC Minas: Fundação Biodiversitas: Fundação Ezequiel Dias, Belo Horizonte 1994).
23.
Flavell AJ, Jackson V, Iqbal MP, Riach I, Waddell S: Ty1-copia group retrotransposon sequences in Amphibia and Reptilia. Mol Gen Genet 246:65–71 (1995).
24.
Fry BG, Wüster W: Assembling an arsenal: origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences. Mol Biol Evol 21:870–883 (2004).
25.
Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP: Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57:110–129 (2003).
26.
Fry BG, Scheib H, Weerd L, Young B, McNaughtan J, et al: Evolution of an arsenal structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol Cell Proteomics 7:215–246 (2008).
27.
Fujimi TJ, Tsuchiya T, Tamiya T: A comparative analysis of invaded sequences from group IA phospholipase A2 genes provides evidence about the divergence period of genes groups and snake families. Toxicon 40:873–884 (2002).
28.
Fujimi TJ, Yasuoka S, Ogura E, Tsuchiya T, Tamiya T: Comparative analysis of gene expression mechanisms between group IA and IB phospholipase A2 genes from sea snake Laticauda semifasciata. Gene 332:179–190 (2004).
29.
García JAR, Hernando A: Standard karyotype and nucleolus organizer region of neotropical blindsnake Typhlops brongersmianus (Serpentes: Typhlopidae). Acta Herpetologica 2:117–120 (2007).
30.
Goloboff P, Farris S, Nixon K: TNT (tree analysis using new technology). Beta version. Published by the authors. Tucuman, Argentina (2000). At http://www.cladistics.com/
31.
Graham G: The karyotype of the Texas coral snake, Micrurus fulvius tenere. Herpetologica 33:345–348 (1977).
32.
Gubensek F, Kordis D: Venom phospholipase A2 genes and their molecular evolution; in Kini M (ed.): Venom phospholipase A2 enzymes, pp. 73–95 (John Wiley & Sons Ltd., England 1997).
33.
Gutiérrez JM, Bolaños R: Cariótipos de las principales serpientes coral (Elapidae: Micrurus) de Costa Rica. Rev Biol Trop 27:57–73 (1979).
34.
Gutierrez JM, Solorzano A, Cerdas L: Karyotypes of five species of coral snakes (Micrurus). J Herpetol 22:109–112 (1988).
35.
Hall T: BioEdit Sequence Alignment Editor for Windows 95/98/NT/XP. Version 7.0.9 (2007). At http://www.mbio.ncsu.edu/BioEdit/bioedit.html.
36.
Hille A, Janssen IAW, Menken SBJ, Schlegel M, Thorpe RS: Heterologous amplification of microsatellite markers from colubroid snakes in European natricines (Serpentes: Natricinae). J Hered 93:63–66 (2002).
37.
Hughes S, Claya O, Bernardi G: Compositional patterns in reptilian genomes. Gene 295:323–329 (2002).
38.
Jackson K: The evolution of venom-delivery systems in snakes. Zool J Linn Soc 137:337–354 (2003).
39.
Janes DE, Organ C, Valenzuela N: New resources inform study of genome size, content, and organization in nonavian reptiles. Integr Comp Biol 48:447–453 (2008).
40.
Jiang ZJ, Castoe TA, Austin CC, Burbrink FT, Herron MD, et al: Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evol Biol 7:123 (2007).
41.
John TR, Smith LA, Kaiser II: Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions. Gene 139:229–234 (1994).
42.
Jones KW, Singh L: Snakes and the evolution of sex chromosomes. Trends Genet 1:55–61 (1985).
43.
Juárez P, Comas I, González-Candelas F, Calvete JJ: Evolution of snake venom disintegrins by positive Darwinian selection. Mol Biol Evol 25:2391–2407 (2008).
44.
Kardong KV: Colubrid snakes and Duvernoy’s ‘venom’ glands. J Toxicol Toxin Rev 21:1–19 (2002).
45.
Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y: Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117:92–102 (2007).
46.
Kelly CMR, Barker NP, Villet MH, Broadley DG: Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene. Cladistics 25:38–63 (2009).
47.
Kochva E: Oral glands of the reptilia; in Gans C, Gans KA (eds.): Biology of the Reptilia, pp. 43–161 (Academic Press, New York 1978).
48.
Kochva E: The origin of snakes and evolution of the venom apparatus. Toxicon 25:65–106 (1987).
49.
Kochva E, Bdolah A, Wollberg Z: Sarafotoxins and endothelins: evolution, structure and function. Toxicon 31:541–568 (1993).
50.
Kohlsdorf T, Cummings MP, Lynch VJ, Stopper GF, Takahashi K, Wagner GP: A molecular footprint of limb loss: sequence variation of the autopodial identity gene Hoxa-13. J Mol Evol 67:581–593 (2008).
51.
Kordis D, Gubensek F: Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci USA 95:10704–10709 (1998).
52.
Kordis D, Bdolah A, Gubensek F: Positive Darwinian selection in Vipera palaestinae phospholipase A2 genes is unexpectedly limited to the third exon. Biochem Biophys Res Commun 251:613–619 (1998).
53.
Kumazawa Y: Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakes. DNA Res 11:137–144 (2004).
54.
Kumazawa Y, Ota H, Nishida M, Ozawa T: Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol 13:1242–1254 (1996).
55.
Lawson R, Slowinski JB, Crother BI, Burbrink FT: Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Mol Phylogenet Evol 37:581–601 (2005).
56.
Lee MSY, Hugall A, Lawson R, Scanlon J: Phylogeny of snakes (Serpentes): combining morphological and molecular data in likelihood, Bayesian and parsimony analyses. System Biodivers 5:371–389 (2007).
57.
Lukoschek V, Waycott M, Keogh S: Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17:3062–3077 (2008).
58.
Luykx P, Slowinski JB, McCranie JR: The karyotype of the coral snake Micrurus ruatanus. Amphib-Reptil 13:289–292 (1992).
59.
Lynch M: The origins of genome architecture, pp. 363–389 (Sinauer Associates, Inc., Sunderland 2007).
60.
Lynch VJ: Inventing an arsenal: adaptive evolution and neofunctionalization of snake venom phospholipase A2 genes. BMC Evol Biol 7:2 (2007).
61.
Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.7 (2009) at http://mesquiteproject.org.
62.
Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y: Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci USA 103:18190–18195 (2006).
63.
Matsuda Y, Nishida-Umehara C, Tarui H, Kuroiwa A, Yamada K, et al: Highly conserved linkage homology between birds and turtles: Bird and turtle chromosomes are precise counterparts of each other. Chromosome Res 13:601–615 (2005).
64.
McDowell SB: The architecture of the corner of the mouth of colubroid snakes. J Herpetol 20:353–407 (1986).
65.
Mengden GA, Stock D: Chromosomal evolution in Serpentes; a comparison of G and C chromosome patterns of some colubrid and boid genera. Chromosoma 79:52–61 (1980).
66.
Moura-da-Silva AM, Paine MJI, Diniz MRV, Theakston RDG, Crampton JM: The molecular cloning of a phospholipase A2 from Bothrops jararacussu snake venom: evolution of venom group II phospholipase A2’s may imply gene duplications. J Mol Evol 41:174–179 (1995).
67.
Moura-da-Silva AM, Theakston RDG, Crampton JM: Evolution of disintegrin cysteine-rich and mammalian matrix-degrading metalloproteinases: gene duplication and divergence of a common ancestor rather than convergent evolution. J Mol Evol 43:263–269 (1996).
68.
Moura-da-Silva AM, Theakston RDG, Crampton JM: Molecular evolution of phospholipase A2s and metalloproteinase/disintegrins from venoms of vipers; in Thorpe RS, Wüster W, Malhotra A (eds.): Venomous Snakes: Ecology, Evolution and Snakebite, pp. 173–187 (Claredon Press, Oxford 1997).
69.
Mühlmann-Diaz MC, Ulsh BA, Whicker FW, Hinton TG, Congdon JD, Robinson JF, Bedford JS: Conservation of chromosome 1 in turtles over 66 million years. Cytogenet Cell Genet 92:139–143 (2001).
70.
Mulcahy DG, Macey JR: Vicariance and dispersal form a ring distribution in nightsnakes around the gulf of California. Mol Phylogenet Evol 53:537–546 (2009).
71.
Nakashima KI, Nobuhisa I, Deshimaru M, Nakai M, Ogawa T, et al: Accelerated evolution in the protein-coding regions is universal in crotalinae snake venom gland phospholipase A2 isozyme genes. Proc Natl Acad Sci USA 92:5605–5609 (1995).
72.
Nelson GJ: Classification as an expression of phylogenetic relationships. Syst Zool 22:344–359 (1973).
73.
Nobuhisa I, Ogawa T, Deshimaru M, Chijiwa T, Nakashima K-I, et al: Retrotransposable CR1-like elements in Crotalinae snake genomes. Toxicon 36:915–920 (1998).
74.
Oguiura N, Collares MA, Furtado MFD, Ferrarezzi H, Suzuki H: Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene 446:35–40 (2009).
75.
Olmo E: A. Reptilia; in John B (ed.): Animal Cytogenetics, 4. Chordata 3, pp. 1–100 (Gebrueder Borntraeger, Berlin, Stuttgart 1986).
76.
Olmo E: Rate of chromosome changes and replication in reptiles. Genetica 125:185–203 (2005).
77.
Olmo E: Trends in the evolution of reptilian chromosomes. Integr Comp Bio 48:486–493 (2008).
78.
Olmo E, Capriglione T, Odierna G: Different genomic evolutionary rates in the various reptile lineages. Gene 295:317–321 (2002).
79.
Olmo E, Signorino G: Chromorep: a reptile chromosomes database (2005) at http:// 193.206.118.100/professori/chromorep.pdf.
80.
Patané JSL: Program for extraction of GenBank annotated sequences, version 0.99a (2009).
81.
Piskurek O, Austin CC, Okada N: Sauria SINEs: novel short interspersed retroposable elements that are widespread in reptile genomes. J Mol Evol 62:630–644 (2006).
82.
Porter CA, Hamilton MJ, Sites Jr JW, Baker RJ: Location of ribosomal DNA in chromosomes of squamate reptiles: systematic and evolutionary implications. Herpetologica 47:271–280 (1991).
83.
Rádis-Baptista G, Kubo T, Oguiura N, Svartman M, Almeida TMB, et al: Structure and chromosomal localization of the gene for crotamine, a toxin from the South American rattlesnake, Crotalus durissus terrificus. Toxicon 42:747–752 (2003).
84.
Rádis-Baptista G, Kubo T, Oguiura N, Silva ARBPda, Hayashi MAF, Oliveira EB, Yamane T: Identification of crotasin, a crotamine-related gene of Crotalus durissus terrificus. Toxicon 43:751–759 (2004).
85.
Rasmus W, Pedersen AG: RevTrans – Constructing alignments of coding DNA from aligned amino acid sequences. Nucl Acids Res 31:3537–3539 (2003).
86.
Ray-Chaudhuri SP, Singh L: DNA replication pattern in sex chromosomes of snakes. Nucleus 15:200–210 (1972).
87.
Ray-Chaudhuri SP, Singh L, Sharma T: Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma 33:239–251 (1971).
88.
Ray-Chaudhuri SP, Singh L, Sharma T: Sexual dimorphism in somatic interphase nuclei of snakes. Cytogenetics 9:410–423 (1970).
89.
Serafim H, Peccinini-Seale DM, Batistic RF: Estudo cariotípíco de duas espécies brasileiras do gênero Micrurus (Ophidia: Elapidae). Biota Neotropica 7 (n1): (2007) at http://www.biotaneotropica.org.br/v7n1/pt/abstract?article±bn01607012007).
90.
Singh L: Evolution of karyotypes of snakes. Chromosoma 38:185–236 (1972).
91.
Singh L, Sharma T, Ray-Chaudhuri SP: W chromosome in Indian water snake (checkered keel back) Natrix piscator (Colubridae). Experientia 24:7980 (1968).
92.
Singh L, Sharma T, Ray-Chaudhuri SP: Multiple sex chromosomes in the common Indian krait, Bungarus caeruleus Schneider. Chromosoma 31:386–391 (1970).
93.
Singh L, Purdom IF, Jones KW: Satellite DNA and evolution of sex chromosomes. Chromosoma 59:43–62 (1976).
94.
Singh L, Ray-Chaudhuri SP, Manjundar K, Purdon IF, Jones KW: Sex specific chromosome polymorphisms in the common Indian krait Bungarus caeruleus Schneider (Ophidia, Elapidae). Chromosoma 73:93–108 (1979).
95.
Slowinski JB, Knight A, Rooney AP: Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. Mol Phylogenet Evol 8:349–362 (1997).
96.
Strydom DJ: Snake venom toxins: the evolution of some of the toxins found in snake venoms. Syst Zool 22:596–608 (1973).
97.
Tamiya T, Fujimi TJ: Molecular evolution of toxin genes in Elapidae snakes. Mol Divers 10:529–543 (2006).
98.
Torres AM, Kuchel PW: The β-defensin-fold family of polypeptides. Toxicon 44:581–588 (2004).
99.
Trajtengertz I, Beçak ML, Ruiz IRG: Ribosomal cistrons in Bothrops neuwiedi (Serpentes) subspecies from Brazil. Genome 38:601–606 (1995).
100.
Vidal N, Delmas AS, Hedges SB: The higher-level relationships of alethinophidian snakes inferred from seven nuclear and mitochondrial genes; in Henderson RW, Powell R (eds.): Biology of the Boas and Pythons, pp. 27–33 (Eagle Mountain Publishing LC, Eagle Mountain 2007a).
101.
Vidal N, Delmas AS, David P, Cruaud C, Couloux A, Hedges SB: The phylogeny and classification of caenophidian snakes inferred from seven nuclear protein-coding genes. C R Biol 330:182–187 (2007b).
102.
Vidal N, Branch WR, Pauwels OSG, Hedges SB, Broadley DG, et al: Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia). Zootaxa 1945:51–66 (2008).
103.
Vidal N, Rage JC, Couloux A, Hedges SB: Snakes (Serpentes); in Hedges SB, Kumar S (eds): The Timetree of Life, pp. 390–397 (Oxford University Press, New York 2009).
104.
Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MA, et al: Evolutionary origin and development of snake fangs. Nature 454:630–633 (2008).
105.
Wiens JJ, Kuczynski CA, Smith SA, Mulcahy DG, Sites JW Jr, Townsend TM, Reeder, TWB: Ranch lengths, support, and congruence: testing the phylogenomic approach with 20 nuclear loci in snakes. Syst Biol 57:420–431 (2008).
106.
Wiley EO: An annotated Linnean hierarchy, with comments on natural taxa and competing systems. Syst Zool 28:308–337 (1979).
107.
Wüster W, Harvey AL: Reviews of venomous snake systematics in Toxicon. Toxicon 34:397–398 (1996); Comment on: Toxicon 34:399–406 (1996).
108.
Wüster W, Peppin L, Pook CE, Walker DE: A nesting of vipers: Phylogeny and historical biogeography of Viperidae (Squamata: Serpentes). Mol Phylogenet Evol 49:445–459 (2008).
109.
Yan J, Li H, Zhou K: Evolution of the mitochondrial genome in snakes: gene rearrangements and phylogenetic relationships. BMC Genomics 9:569 (2008).
110.
Zaher H, Grazziotin FG, Cadle JE, Murphy RW, Moura-Leite JC, Bonatto SL: Molecular phylogeny of advanced snakes (Serpentes, Caenophidia) with an emphasis on South American Xenodontines: a revised classification and descriptions of new taxa. Papéis Avulsos de Zoologia (São Paulo) 49:115–153 (2009).
111.
Zupunski V, Gubensek F, Kordis D: Evolutionary dynamics and evolutionary history in the RTE clade of non-LTR retrotransposons. Mol Biol Evol 18:1849–1863 (2001).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.