Grasses are the most important and widely cultivated crops. Among them, ryegrasses (Lolium spp.) and fescues (Festuca spp.) provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Species from the two genera display complementary agronomic characteristics and are often grown in mixtures. Breeding efforts to combine desired features in single entities culminated with the production of Festuca × Lolium hybrids. The so called Festuloliums enjoy a considerable commercial success with numerous cultivars registered all over the world. They are also very intriguing from a strictly cytogenetic point of view as the parental chromosomes recombine freely in hybrids. Until a decade ago this phenomenon was only known in general quantitative terms. The introduction of molecular cytogenetic tools such as FISH and GISH permitted detailed studies of intergeneric chromosome recombination and karyotyping of Festulolium cultivars. These tools were also invaluable in revealing the origin of polyploid fescues, and facilitated the development of chromosome substitution and introgression lines and physical mapping of traits of interest. Further progress in this area will require the development of a larger set of cytogenetic markers and high-resolution cytogenetic maps. It is expected that the Lolium – Festuca complex will continue providing opportunities for breeding superior grass cultivars and the complex will remain an attractive platform for fundamental research of the early steps of hybrid speciation and interaction of parental genomes, as well as the processes of chromosome pairing, elimination and recombination.

1.
Alonso LC, Kimber G: The analysis of meiosis in hybrids. II. Triploid hybrids. Can J Genet Cytol 23:221–234 (1981).
2.
Armstead IP, Bollard A, Morgan WG, et al: Genetic and physical analysis of a single Festuca pratensis chromosome segment substitution in Lolium perenne. Chromosoma 110:52–57 (2001).
3.
Armstead IP, Harper JA, Turner LB, et al: Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum): genetic mapping and identification of associated molecular markers. Plant Pathol 55:62–67 (2006).
4.
Bennett MD, Smith JB, Heslop-Harrison JS: Nuclear DNA amounts in angiosperms.Proc R Soc B-Biol Sci 216:179–199 (1982).
5.
Borrill M: Festuca L., in Stace CA (ed): Hybridization and the Flora of the British Isles, pp 543–547 (Academic Press, London 1975).
6.
Bowman JG, Thomas H: Studies in Festuca. 8. Cytological relationships between F. glaucescens (2n = 28), F. mairei (2n = 28) and F. scoriosa (2n = 14). Z Pflanzenzuecht 76:250–257 (1976).
7.
Buckner RC, Burrus PB, Bush LP: Registration of Kenhy tall fescue. Crop Sci 17:672–673 (1977).
8.
Canter PH, Pašakinskiene I, Jones RN, Humphreys MW: Chromosome substitutions and recombination in the amphiploid Lolium perenne × Festuca pratensis cv Prior (2n = 4x = 28). Theor Appl Genet 98:809–814 (1999).
9.
Cao MS, Sleper DA, Dong FG, Jiang JM: Genomic in situ hybridization (GISH) reveals high chromosome pairing affinity between Lolium perenne and Festuca mairei. Genome 43:398–403 (2000).
10.
Cao M, Bughrara SS, Sleper DA: Cytogenetic analysis of Festuca species and amphiploids between Festuca mairei and Lolium perenne. Crop Sci 43:1659–1662 (2003).
11.
Carnide V, Orellana J, Ribeiro MAMD: Nucleolar organizer activity in Lolium and Festuca.1. Lolium multiflorum, Festuca arundinacea and Lolium-Festuca hybrids. Heredity 56:311–317 (1986).
12.
Catalan P, Torrecilla P, Rodriguez JAL, Olmstead RG: Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol 31:517–541 (2004).
13.
Ceccarelli M, Falistocco E, Cionini PG: Variation of genome size and organization within hexaploid Festuca arundinacea. Theor Appl Genet 83:273–278 (1992).
14.
Černoch V, Našinec I, Šrámek P: Share of grassland on landscape forming in the Czech Republic. Czech J Genet Plant Breed 39:158–162 (2003).
15.
Chen C, Sleper DA: FISH and RFLP marker-assisted introgression of Festuca mairei chromosomes into Lolium perenne. Crop Sci 39:1676–1679 (1999).
16.
Chen C, Sleper DA, West CP: RFLP and cytogenetic analyses of hybrids between Festuca mairei and Lolium perenne. Crop Sci 35:720–725 (1995).
17.
Clayton WD, Renvoize SA: Genera graminum: Grasses of the World. Kew Bull, Add Ser 13:1–389 (1986).
18.
Darbyshire SJ: Realignment of Festuca subgenus Schedonorus with the genus Lolium (Poaceae). Novon 3:239–343 (1993).
19.
Dijkstra J, de Vos ALF: Meiotic doubling of chromosome number in Festulolium. Euphytica 24:743–749 (1975).
20.
Donnison IS, O’Sullivan DM, Thomas A, et al: Construction of a Festuca pratensis BAC library for map-based cloning in Festulolium substitution lines. Theor Appl Genet 110:846–851 (2005).
21.
Dubcovsky J, Dvorak J: Ribosomal-RNA multigene loci – nomads of the Triticeae genomes. Genetics 140:1367–1377 (1995).
22.
Dubcovsky J, Martinez AJ: Cytotaxonomy of the Festuca spp from Patagonia. Canad J Botany-Revue Canadienne de Botanique 70:1134–1140 (1992).
23.
Evans GM, Davies EW: The genetics of meiotic chromosome pairing in Lolium temulentum × Lolium perenne tetraploids. Theor Appl Genet 71:185–192 (1985).
24.
Evans GM, Rees H, Snell CL, Sun S: The relationship between nuclear DNA amount and the duration of the mitotic cycle. Chromosomes Today 3:24–31 (1972).
25.
Farragher MA: On the occurrence of Festuca × Lolium hybrids in the Irish flora. Ir Nat J 18:208–211 (1975).
26.
Farrar K, Asp T, Lubberstedt T, et al: Construction of two Lolium perenne BAC libraries and identification of BACs containing candidate genes for disease resistance and forage quality. Mol Breed 19:15–23 (2007).
27.
Fojtík A: Methods of grass improvement used at the Plant Breeding Station Hladké Životice. Genet Pol 35A:25–31 (1994).
28.
Fojtík A: Šlechtĕní a využití Festulolium v České Republice. Proc National Conference Festulolium – Achievements and Perspectives, Poznań, Poland, November 1998, pp 27–32 (in Czech) (1998).
29.
Greilhuber J, Doležel J, Lysák MA, Bennett MD: The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260 (2005).
30.
Grønnerød S, Fjellheim S, Humphreys MW, et al: Application of AFLP and GISH techniques for identification of Festuca chromosome segments conferring winter hardiness in a Lolium perenne × Festuca pratensis population, in Hopkins A, Wang ZY, Mian R, Sladge M, Backer RE (eds): Molecular Breeding of Forage and Turf, pp 81–86 (Kluwer Academic Publishers, Dordrecht 2004).
31.
Guo YD, Mizukami Y, Yamada T: Genetic characterization of androgenic progeny derived from Lolium perenne × Festuca pratensis cultivars. New Phytol 166:455–464 (2005).
32.
Hackel E: Monographia Festucarum Europearum (Theodor Fischer, Kassel et Berlin 1882).
33.
Harper JA, Thomas ID, Lovatt JA, Thomas HM: Physical mapping of rDNA sites in possible diploid progenitors of polyploid Festuca species. Plant Syst Evol 245:163–168 (2004).
34.
Humphreys MW, Ghesquiere M: Assessing success in gene-transfer between Lolium multiflorum and Festuca arundinacea. Euphytica 77:283–289 (1994).
35.
Humphreys MW, Pašakinskiene I: Chromosome painting to locate genes for drought resistance transferred from Festuca arundinacea into Lolium multiflorum. Heredity 77:530–534 (1996).
36.
Humphreys MW, Thomas H: Improved drought resistance in introgression lines derived from Lolium multiflorum × Festuca arundinacea hybrids. Plant Breed 111:155–161 (1993).
37.
Humphreys MW, Thomas HM, Morgan WG, et al: Discriminating the ancestral progenitors of hexaploid Festuca arundinacea using genomic in situ hybridization. Heredity 75:171–174 (1995).
38.
Humpherys MW, Thomas HM, Harper J, et al: Dissecting drought- and cold-tolerance traits in the Lolium-Festuca complex by introgression mapping. New Phytol 137:55–60 (1997).
39.
Humphreys MW, Zare AG, Pašakinskiene I, Thomas H, Rogers WJ, Collin HA: Interspecific genomic rearrangements in androgenic plants derived from a Lolium multiflorum × Festuca arundinacea (2n = 5x = 35) hybrid. Heredity 80:78–82 (1998).
40.
Humphreys J, Harper JA, Armstead IP, Humphreys MW: Introgression-mapping of genes for drought resistance transferred from Festuca arundinacea var. glaucescens into Lolium multiflorum. Theor Appl Genet 110:579–587 (2005).
41.
Jauhar PP: Chromosome relationships between Lolium and Festuca (Gramineae). Chromosoma 52:103–121 (1975).
42.
Jauhar PP: Cytogenetics of the Festuca-Lolium complex. Relevance to Breeding. Monographs on Theor Appl Genet Vol. 18, pp 255 (Springer-Verlag, Berlin, 1993).
43.
Jones ES, Dupal MP, Dumsday JL, Hughes LJ, Forster JW: An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105:577–584 (2002).
44.
Karp A, Jones RN: Cytogenetics of Lolium perenne. Part 2. Chiasma distribution in inbred lines. Theor Appl Genet 64:137–145 (1983).
45.
Kimber G: Genome analysis in the genus Triticum, in Proceedings of the 6th International Wheat Genetics Symposium Kyoto, Japan, pp 23–28 (1983).
46.
Kimber G, Alonso LC: The analysis of meiosis in hybrids. II. Tetraploid hybrids. Can J Genet Cytol 23:235–254 (1981).
47.
King IP, Morgan WG, Armstead IP, et al: Introgression mapping in the grasses. I. Introgression of Festuca pratensis chromosomes and chromosome segments into Lolium perenne. Heredity 81:462–467 (1998).
48.
King J, Armstead IP, Donnison IS, et al: Physical and genetic mapping in the grasses Lolium perenne and Festuca pratensis. Genetics 161:315–324 (2002).
49.
King J, Armstead IP, Donnison IS, et al: Introgression mapping in the grasses. Chromosome Res 15:105–113 (2007).
50.
Kopecký D, Lukaszewski AJ, Dolezel J: Genomic constitution of Festulolium cultivars released in the Czech Republic. Plant Breed 124:454–458 (2005a).
51.
Kopecky D, Lukaszewski AJ, Gibeault V: Reduction of ploidy level by androgenesis in intergeneric Lolium-Festuca hybrids for turf grass breeding. Crop Sci 45:274–281 (2005b).
52.
Kopecký D, Loureiro J, Zwierzykowski Z, Ghesquiere M, Dolezel J: Genome constitution and evolution in Lolium × Festuca hybrid cultivars (Festulolium). Theor Appl Genet 113:731–742 (2006).
53.
Kosmala A, Skibinska M, Zwierzykowski Z, Humphreys MW, Rapacz M, Joks W: Introgression of genes for abiotic stress resistance from Festuca pratensis and F. arundinacea into Lolium multiflorum germplasm. Vortr Pflanzenzüchtg 59:225–231 (2003).
54.
Kosmala A, Zwierzykowski Z, Gasior D, Rapacz M, Zwierzykowska E, Humphreys MW: GISH/FISH mapping of genes for freezing tolerance transferred from Festuca pratensis to Lolium multiflorum. Heredity 96:243–251 (2006a).
55.
Kosmala A, Zwierzykowska E, Zwierzykowski Z: Chromosome pairing in triploid intergeneric hybrids of Festuca pratensis with Lolium multiflorum, revealed by GISH. J Appl Genet 47:215–220 (2006b).
56.
Laurie DA, Pratchett N, Devos KM, Leitch IJ, Gale MD: The distribution of RFLP markers on chromosome 2(2H) of barley in relation to the physical and genetic location of 5S rDNA. Theor Appl Genet 87:177–183 (1993).
57.
Leggett JM, Markhand GS: The genomic identification of some monosomics of Avena sativa L-Cv Sun-Ii using genomic in situ hybridization. Genome 38:747–751 (1995).
58.
Lesniewska A, Ponitka A, Slusarkiewicz-Jarzina A, et al: Androgenesis from Festuca pratensis × Lolium multiflorum amphidiploid cultivars in order to select and stabilize rare gene combinations for grass breeding. Heredity 86:167–176 (2001).
59.
Lewis EJ, Tyler BF, Chorlton KH: Annual Report of the Welsh Plant Breeding Station 1972, pp 34–37 (1973).
60.
Loureiro J, Kopecký D, Castro S, Santos C, Silveira P: Flow cytometric and cytogenetic analyses of Iberian Peninsula Festuca spp. Plant Syst Evol 269:89–105 (2007).
61.
Lübberstedt T, Schejbel Andreasen B, Bach Holm P: Development of ryegrass allele-specific (GRASP) markers for sustainable grassland improvement – A new EU framework V project. Czech J Genet Plant Breed 39:125–128 (2003).
62.
Lukaszewski AJ, Lapinski B, Rybka K: Limitations of in situ hybridization with total genomic DNA in routine screening for alien introgressions in wheat. Cytogenet Genome Res 109:373–377 (2005).
63.
Malik CP, Thomas PT: Karyotypic studies in some Lolium and Festuca. Caryologia 19:137–196 (1966).
64.
Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR: Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Res 10:349–357 (2002).
65.
Momotaz A, Forster JW, Yamada T: Identification of cultivars and accessions of Lolium, Festuca and Festulolium hybrids through the detection of simple sequence repeat polymorphism. Plant Breed 123:370–376 (2004).
66.
Morgan WG: Chromosome pairing in triploid hybrids and amphidiploids involving Lolium and diploid Festuca species. Genome 33:472–477 (1990).
67.
Morgan WG, Thomas H, Lewis EJ: Cytogenetic studies of hybrids between Festuca gigantea Vill and Lolium multiflorum Lam. Plant Breed 101:335–343 (1988).
68.
Morgan WG, King IP, Koch S, Harper JA, Thomas HM: Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridisation (GISH). Theor Appl Genet 103:696–701 (2001).
69.
Nitzsche W: Obtaining haploid plants from Festuca-Lolium crossbreeds. Naturwissenschaften 57:199–201 (1970).
70.
Olszewska MJ, Osiecka R: The relationship between 2C DNA content, life-cycle type, systematic position, and the level of DNA endoreplication in nuclei of parenchyma cells during growth and differentiation of roots in some monocotyledonous species. Biochem Physiol Pflanzen 177:319–336 (1982).
71.
Pašakinskiene I, Anamthawat-Jonsson K, Humphreys MW, Paplauskiene V, Jones RN: New molecular evidence on genome relationships and chromosome identification in fescue (Festuca) and ryegrass (Lolium). Heredity 81:659–665 (1998).
72.
Roderick HW, Morgan WG, Harper JA, Thomas HM: Introgression of crown rust (Puccinia coronata) resistance from meadow fescue (Festuca pratensis) into Italian ryegrass (Lolium multiflorum) and physical mapping of the locus. Heredity 91:396–400 (2003).
73.
Rose JB, Dunwell JM, Sunderland N: Anther culture of Lolium temulentum, Festuca pratensis and Lolium × Festuca hybrids.1. Influence of pretreatment, culture medium and culture incubation conditions on callus production and differentiation. Ann Bot 60:191–201 (1987).
74.
Schifino MT, Winge H: Karyotypes and nuclear DNA content of species of the Briza complex and some other genera of Poeae (Gramineae). Rev Brazilian Genet 6:245–259 (1985).
75.
Schubert I, Wobus U: In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148 (1985).
76.
Schwarzacher T: DNA, chromosomes, and in situ hybridization. Genome 46:953–962 (2003).
77.
Schwarzacher T, Heslop-Harrison P: Practical in situ Hybridization (Bios Scientific Publishers Ltd, New York 2000).
78.
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS: In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324 (1989).
79.
Shen P, Huang HV: Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112:441–457 (1986).
80.
Skibińska M, Kosmala A, Humphreys MW, Zwierzykowski Z: Application of GISH and AFLP techniques for identification of Lolium-Festuca introgressions. Cell Mol Biol Lett 7:493–498 (2002).
81.
Thomas HM: The Giemsa C-band karyotypes of six Lolium species. Heredity 46:263–267 (1981).
82.
Thomas HM: Meiosis of triploid Lolium. 2. Discrepancies between the analyses of chromosome configurations at metaphase-I in inverse autoallotriploid combinations. Heredity 75:446–452 (1995).
83.
Thomas H, Humphreys MO: Progress and potential of interspecific hybrids of Lolium and Festuca. J Agr Sci 117:1–8 (1991).
84.
Thomas H, Morgan WG, Humphreys MW: The use of a triploid hybrid for introgression in Lolium species. Theor Appl Genet 76:299–304 (1988).
85.
Thomas HM, Morgan WG, Meredith MR, Humphreys MW, Thomas H, Leggett JM: Identification of parental and recombined chromosomes in hybrid derivatives of Lolium multiflorum × Festuca pratensis by genomic in situ hybridization. Theor Appl Genet 88:909–913 (1994).
86.
Thomas HM, Harper JA, Meredith MR, et al: Comparison of ribosomal DNA sites in Lolium species by fluorescence in situ hybridization. Chromosome Res 4:486–490 (1996).
87.
Thomas H, Evans C, Thomas HM, et al: Introgression, tagging and expression of a leaf senescence gene in Festulolium. New Phytol 137:29–34 (1997a).
88.
Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP: Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hybridization. Genome 40:406–410 (1997b).
89.
Thomas HM, Morgan WG, Humphreys MW: Designing grasses with a future – combining the attributes of Lolium and Festuca. Euphytica 133:19–26 (2003).
90.
Vaughan HE, Jamilena M, Rejon CR, Parker JS, Garridoramos MA: Loss of nucleolar-organizer regions during polyploid evolution in Scilla autumnalis. Heredity 71:574–580 (1993).
91.
Wang ZY, Ge YX: Invited review: Recent advances in genetic transformation of forage and turf grasses. In Vitro Cell Dev Biol Plant 42:1–18 (2006).
92.
Wanous MK, Gustafson JP: A genetic map of rye chromosome 1R integrating RFLP and cytogenetic loci. Theor Appl Genet 91:720–726 (1995).
93.
Zare AG, Humphreys MW, Rogers WJ, Collin HA: Androgenesis from a Lolium multiflorum × Festuca arundinacea hybrid to generate extreme variation for freezing-tolerance. Plant Breed 118:497–501 (1999).
94.
Zwierzykowski Z, Lukaszewski AJ, Lesniewska A, Naganowska B: Genomic structure of androgenic progeny of pentaploid hybrids, Festuca arundinacea × Lolium multiflorum. Plant Breed 117:457–462 (1998a).
95.
Zwierzykowski Z, Tayyar R, Brunell M, Lukaszewski AJ: Genome recombination in intergeneric hybrids between tetraploid Festuca pratensis and Lolium multiflorum. J Hered 89:324–328 (1998b).
96.
Zwierzykowski Z, Lukaszewski AJ, Naganowska B, Lesniewska A: The pattern of homoeologous recombination in triploid hybrids of Lolium multiflorum with Festuca pratensis. Genome 42:720–726 (1999a).
97.
Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, Ponitka A: Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea × Lolium multiflorum. Euphytica 105:191–195 (1999b).
98.
Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones N, Joks W, Bocianowski J: Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theor Appl Genet 113:539–547 (2006).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.