We review the current status of our understanding and knowledge of the genes and proteins controlling meiosis in five major cereals, rye, wheat, barley, rice and maize. For each crop, we describe the genetic and genomic infrastructure available to investigators, before considering the inventory of genes and proteins that have roles to play in this process. Emphasis is given throughout as to how translational genomic and proteomic approaches have enabled us to circumvent some of the intractable features of this important group of plants.

1.
Akama Y, Shimazu J, Niizeki M, Senda M, Ishikawa R, et al: Expression of RAD5I-like genes in japonica rice. Rice Genet Newslett 16:118–119 (1999).
2.
Akhunov ED, Goodyear AW, Geng S, Qi L-L, Echalier B, et al: The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763 (2003).
3.
Al-Kaff N, Knight E, Bertin E, Foote T, Hart N, et al: Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum L. with deletion mutants and expression profiling. Ann Bot in press (2007).
4.
Allouis S, Moore G, Bellec A, Sharp R, Faivre Rampant P, et al: Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Res Commun 31:331–338 (2003).
5.
An G, Jeong D-H, Jung K-H, Lee S: Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59:111–123 (2005).
6.
An S, Park S, Jeong D-H, Lee D-Y, Kang H-G, et al: Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol 133:2040–2047 (2003).
7.
Anderson LK, Stack SM: Meiotic recombination in plants. Curr Genomics 3:507–525 (2002).
8.
Anderson LK, Offenberg HH, Verkuijlen WMHC, Heyting C: RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci USA 94:6868–6873 (1997).
9.
Armstrong SJ, Caryl AP, Jones GH, Franklin FCH: Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655 (2002).
10.
Bass HW, Bordoli SJ, Foss EM: The desynaptic (dy) and desynaptic1 (dsy1) mutations in maize (Zea mays L) cause distinct telomere-misplacement phenotypes during meiotic prophase. J Exp Bot 54:39–46 (2003).
11.
Bennett MD, Smith JB: Nuclear DNA amounts in angiosperms. Phil Trans R Soc London B 274:227–274 (1976).
12.
Bennett MD, Smith JB: Nuclear DNA amounts in angiosperms. Phil Trans R Soc London B 334:309–345 (1991).
13.
Bishop DK, Zickler D: Early decision: meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117:9–15 (2004).
14.
Boden SA, Shadiac N, Tucker EJ, Langridge P, Able JA: Expression and functional analysis of an asynapsis gene, TaASY1, during meiosis of bread wheat (Triticum aestivum). BMC Mol Biol 8:65 (2007).
15.
Borner A, Korzun V: A consensus linkage map of rye (Secale cereale L.) including 274 RFLPs, 24 isozymes and 15 gene loci. Theor Appl Genet 97:1279–1288 (1998).
16.
Borner A, Korzun V, Voylokov AV, Worland AJ, Weber WE: Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116:203–209 (2000).
17.
Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall D, et al: A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150 (2004).
18.
Caryl AP, Armstrong SJ, Jones GH, Franklin FCH: A homologue of the yeast HOP1 gene is inactivated in Arabidopsis meiotic mutant asy1. Chromosoma 109:62–71 (2000).
19.
Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, et al: Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274 (1994).
20.
Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, et al: A composite map of expressed sequences in maize. Genome 39:418–432 (1996).
21.
Chen MS, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, et al: An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545 (2002).
22.
Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, et al: A new resource for cereal genomics: 22K barley genechip comes of age. Plant Physiol 134:960–968 (2004).
23.
Coe E, Cone K, McMullen M, Chen SS, Davis G, et al: Access to the maize genome: An integrated physical and genetic map. Plant Physiol 128:9–12 (2002).
24.
Cone KC, McMullen MD, Bi IV, Davis GL, Yim Y, et al: Genetic, physical, and informatics resources for maize on the road to an integrated map. Plant Physiol 130:1598–1605 (2002).
25.
Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M, et al: A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637 (2004).
26.
Corredor E, Lukaszewski AJ, Pachon P, Allen DC and Naranjo T: Terminal regions of wheat chromosomes select their pairing partners in meiosis. Genetics 177:699–706 (2007).
27.
Cowperthwaite M, Park W, Xu ZN, Yan XH, Maurais SC, et al: Use of the transposon Ac as a gene-searching engine in the maize genome. Plant Cell 14:713–726 (2002).
28.
Crismani W, Baumann U, Sutton T, Shirley N, Webster T, et al: Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics 7:267 (2006).
29.
Curtis CA, Doyle GG: Double meiotic mutants of maize – implications for the genetic regulation of meiosis. J Heredity 82:156–163 (1991).
30.
Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, et al: A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172 (1999).
31.
Deng Z-Y, Wang T: OsDMC1 is required for homologous pairing in Oryza sativa. Plant Mol Biol 65:31–42 (2007).
32.
Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser ME, et al: Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94:387–398 (1998).
33.
Devos KM, Ma JX, Pontaroli AC, Pratt LH, Bennetzen JL: Analysis and mapping of randomly chosen bacterial artificial chromosome clones from hexaploid bread wheat. Proc Natl Acad Sci USA 102:19243–19248 (2005).
34.
Ding ZJ, Wang T, Chong K, Bai SN: Isolation and characterization of OsDMC1, the rice homologue of the yeast DMC1 gene essential for meiosis. Sexual Plant Reprod 13:285–288 (2001).
35.
Dong CM, Whitford R, Langridge P: A DNA mismatch repair gene links to the Ph2 locus in wheat. Genome 45:116–124 (2002).
36.
Dong CM, Thomas S, Becker D, Lorz H, Whitford R, et al: WM5: Isolation and characterisation of a gene expressed during early meiosis and shoot meristem development in wheat. Funct Plant Biol 32:249–258 (2005).
37.
Doutriaux M-P, Couteau F, Bergounioux C, White C: Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet 257:283–291 (1998).
38.
Driscoll CJ: Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can J Genet Cytol 14:39–42 (1972).
39.
Druka A, Muehlbauer G, Druka I, Caldo R, Baumann U, et al: An atlas of gene expression from seed to seed through barley development. Funct Integrat Genomics 6:202–211 (2006).
40.
Endo TR, Gill BS: The deletion stocks of common wheat. J Hered 87:295–307 (1996).
41.
Fang Z, Cone K, Sanchez-Villeda H, Polacco M, McMullen M, et al: iMap: a database-driven utility to integrate and access the genetic and physical maps of maize. Bioinformatics 19:2105–2111 (2003).
42.
Feltus FA, Wan J, Schulze AR, Estill JC, Jiang N, et al: An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819 (2004).
43.
Feng Q, Zhang Y, Hao P, Wang S, Fu G, et al: Sequence analysis of rice chromosome 4. Nature 420:316–320 (2002).
44.
Franckowiak JD, Kleinhofs A, Lundqvist U: Descriptions of barley genetic stocks for 2005. Barley Genet Newslett 35:155–210 (2005).
45.
Franklin AE, McElver J, Sunjevaric I, Rothstein R, Bowen B, et al: Three-dimensional microscopy of the Rad51 recombination protein during meiotic prophase. Plant Cell 11:809–824 (1999).
46.
Franklin AE, Golubovskaya IN, Bass HW, Cande WZ: Improper chromosome synapsis is associated with elongated RAD51 structures in the maize desynaptic2 mutant. Chromosoma 112:17–25 (2003).
47.
Gale MD, Rees H: Genes controlling chiasma frequency in Hordeum. Heredity 25:393–410 (1970).
48.
Gao LF, Jing RL, Huo NX, Li Y, Li XP, et al: One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theor Appl Genet 108:1392–1400 (2004).
49.
Gardiner J, Schroeder S, Polacco ML, Sanchez-Villeda H, Fang ZW, et al: Anchoring 9,371 maize expressed sequence tagged unigenes to the bacterial artificial chromosome contig map by two-dimensional overgo hybridization. Plant Physiol 134:1317–1326 (2004).
50.
Gill KS, Gill BS, Endo TR, Mukai Y: The physical mapping of Ph1, a chromosome pairing regulator gene in polyploid wheat. Genetics 134:1231–1236 (1993).
51.
Goff SA, Ricke D, Lan TH, Presting G, Wang R, et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100 (2002).
52.
Golubovskaya I: Meiosis in maize: mei genes and conception of genetic control of meiosis. Adv Genet 26:149–192 (1989).
53.
Golubovskaya I, Mashenkov AS: A mutation causing the absence of the first division in meiosis. Maize Genet Cooperative Newslett 49:97 (1975).
54.
Golubovskaya I, Avalkina N, Sheridan WF: Effects of several meiotic mutations on female meiosis in maize. Dev Genet 13:411–424 (1992).
55.
Golubovskaya I, Grebennikova ZK, Avalkina NA, Sheridan WF: The role of the ameiotic gene in the initiation of meiosis and in subsequent meiotic events in maize. Genetics 135:1151–1166 (1993).
56.
Golubovskaya I, Avalkina N, Sheridan WF: New insights into the role of the maize ameiotic locus. Genetics 147:1339–1350 (1997).
57.
Golubovskaya IN, Harper LC, Pawlowski WP, Schichnes D, Cande WZ: The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). Genetics 162:1979–1993 (2002).
58.
Golubovskaya I, Sheridan W, Harper L, Cande WZ: Novel meiotic mutants of maize identified from Mu transposon and EMS mutant screens. Maize Genet Cooperative Newslett 77:10–13 (2003).
59.
Golubovskaya I, Hamant O, Timofejeva L, Wang RC-J, Braun D, et al: Alleles of afd1 dissect REC8 functions during meiotic prophase I. J Cell Sci 119:3306–3315 (2006).
60.
Gonzalez C, Camacho MV, Benito C: Chromosomal location of 46 new RAPD markers in rye (Secale cereale L.). Genetica 115:205–211 (2002).
61.
Greco R, Ouwerkerk PBF, de Kam RJ, Sallaud C, Favalli C, et al: Transpositional behaviour of an Ac/Ds system for reverse genetics in rice. Theoret Appl Genet 108:10–24 (2003).
62.
Grelon M, Vezon D, Gendrot G, Pelletier G: AtSPO11-1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600 (2001).
63.
Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, et al: Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752 (2006).
64.
Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, et al: Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422 (2002).
65.
Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, et al: Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323 (2003).
66.
Hackauf B, Wehling P: Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breeding 121:17–25 (2002).
67.
Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, et al: A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol 15:948–954 (2005).
68.
Hamant O, Ma H, Cande WZ: Genetics of meiotic prophase I in plants. Ann Rev Plant Biol 57:267–302 (2006).
69.
Harushima Y, Yano M, Shomura P, Sato M, Shimano T, et al: A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494 (1998).
70.
Hayden MJ, Stephenson P, Logojan AM, Khatkar D, Rogers C, et al: Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.). Theor Appl Genet 113:1271–1281 (2006).
71.
Hernandez-Soriano JM, Ramage RT: Desynaptic genes. Barley Genet Newslett 4:123–125 (1974).
72.
Higgins JD, Armstrong SJ, Franklin FCH, Jones GH: The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis. Genes Dev 18:2557–2570 (2004).
73.
Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FCH: The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500 (2005).
74.
Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M: Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788 (1996).
75.
Hirochika H, Guiderdoni E, An G, Hsing Y, Eun MY, et al: Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334 (2004).
76.
Hobolth P: Chromosome pairing in allohexaploid wheat var. Chinese Spring. Transformation of multivalents into bivalents, a mechanism for exclusive bivalent formation. Carlsberg Res Commun 46:129–173 (1981).
77.
Hollingsworth NM, Byers B: HOP1: a yeast meiotic pairing gene. Genetics 121:445–462 (1989).
78.
Holm PB: Chromosome pairing and chiasma formation in allohexaploid wheat, Triticum aestivum, analysed by spreading of meiotic nuclei. Carlsberg Res Commun 51:239–294 (1986).
79.
Holm PB: Chromosome pairing and synaptonemal complex formation in hexaploid wheat, monoisosomic and diisosomic for the long arm of chromosome 5B. Carlsberg Res Commun 53:111–133 (1988a).
80.
Holm PB: Chromosome pairing and synaptonemal complex formation in hexaploid wheat, monosomic for chromosome 5B. Carlsberg Res Commun 53:57–89 (1988b).
81.
Holm PB: Chromosome pairing and synaptonemal complex formation in hexaploid wheat, nullisomic for chromosome 5B. Carlsberg Res Commun 53:91–110 (1988c).
82.
Holm PB, Wang X: The effect of chromosome 5B on synapsis and chiasma formation in wheat, Triticum aestivum cv. Chinese Spring. Carlsberg Res Commun 53:191–208 (1988).
83.
Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ, et al: A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699 (2004).
84.
International Rice Genome Sequencing Project: The map-based sequence of the rice genome. Nature 436:793–800 (2005).
85.
Ishibashi T, Kimura S, Furukawa T, Hatanaka M, Hashimoto J, et al: Two types of replication protein A 70 kDa subunit in rice, Oryza sativa: molecular cloning, characterization, and cellular and tissue distribution. Gene 272:335–343 (2001).
86.
Jackson N, Sanchez-Moran E, Buckling E, Armstrong SJ, Jones GH, et al: Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis. EMBO J 25:1315–1323 (2006).
87.
Janda J, Bartos J, Safar J, Kubalakova M, Valarik M, et al: Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theor Appl Genet 109:1337–1345 (2004).
88.
Janda J, Safar J, Kubalakova M, Bartos J, Kovarova P, et al: Advanced resources for plant genomics: a BAC library specific for the short arm of wheat chromosome 1B. Plant J 47:977–986 (2006).
89.
Jean M, Pelletier J, Hilpert M, Belzile F, Kunze R: Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Mol Gen Genet 262:633–642 (1999).
90.
Jenkins G: Chromosome pairing in Triticum aestivum cv. Chinese Spring. Carlsberg Res Commun 48:255–283 (1983).
91.
Jenkins G, Mikhailova EI, Langdon T, Tikholiz OA, Sosnikhina SP, et al: Strategies for the study of meiosis in rye. Cytogenet Genome Res 109:221–227 (2005).
92.
Jeon J, Lee S, Jung K, Jun S, Jeong D, et al: T-DNA insertional mutagensis for functional genomics in rice. Plant J 22:561–570 (2000).
93.
Jeong D, An S, Kang H, Moon S, Han M, et al: T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130:1636–1644 (2002).
94.
Kathiresan A, Khush GS, Bennett J: Two rice DMC1 genes are differentially expressed during meiosis and during haploid and diploid mitosis. Sexual Plant Reprod 14:257–267 (2001).
95.
Kerrebrock AW, Miyazaki WY, Birnby D, Orr-Weaver TL: The Drosophila mei-S332 gene promotes sister-chromatid cohesion in meiosis following kinetochore differentiation. Genetics 130:827–841 (1992).
96.
Khlestkina EK, Ma HMT, Pestsova EG, Roder MS, Malyshev SV, et al: Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor Appl Genet 109:725–732 (2004).
97.
Kitada K, Omura T: Genetic control of meiosis in rice Oryza sativa L. II. Cytogenetical analyses of desynaptic mutants. Jpn J Genet 58:567–577 (1983).
98.
Kitada K, Kurata N, Satoh H, Omura T: Genetic control of meiosis in rice, Oryza sativa L. I. Classification of meiotic mutants induced by MNU and their cytogenetical characteristics. Jpn J Genet 58:231–240 (1983).
99.
Kleckner N: Meiosis: How could it work? Proc Natl Acad Sci USA 93:8167–8174 (1996).
100.
Korzun V, Kartel N, Plaschke J, Borner A: Construction and screening of a rye DNA library for RFLP mapping. Cereal Res Commun 22:151–157 (1994).
101.
Korzun V, Malyshev S, Kartel N, Westermann T, Weber WE, et al: A genetic linkage map of rye (Secale cereale L.). Theor Appl Genet 96:203–208 (1998).
102.
Korzun V, Boerner A, Siebert R, Malyshev S, Hilpert M, et al: Chromosomal location and genetic mapping of the mismatch repair gene homologs MSH2, MSH3, and MSH6 in rye and wheat. Genome 42:1255–1257 (1999).
103.
Korzun V, Malyshev S, Voylokov AV, Borner A: A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor Appl Genet 102:709–717 (2001).
104.
Kota R, Rudd S, Facius A, Kolesov G, Thiel T, et al: Snipping polymorphisms from large EST collections in barley (Hordeum vulgare L.). Mol Genet Genomics 270:24–33 (2003).
105.
Krogh BO, Symington LS: Recombination proteins in yeast. Ann Rev Genet 38:233–271 (2004).
106.
Kumar CS, Wing RA, Sundaresan V: Efficient insertional mutagenesis in rice using the maize En/Spm elements. Plant J 44:879–892 (2005).
107.
Lawrence CJ, Dong Q, Polacco ML, Seigfried TE, Brendel V: MaizeGDB, the community database for maize genetics and genomics. Nucleic Acids Res 32:D393 – D397 (2004).
108.
Li J, Harper LC, Golubovskaya I, Wang CR, Weber D, et al: Functional analysis of maize RAD51 in meiosis and double-strand break repair. Genetics 176:1469–1482 (2007).
109.
Li W, Chen C, Markmann-Mulisch U, Timofejeva L, Schmelzer E, et al: The Arabidopsis AtRAD51 gene is dispensable for vegetative development but required for meiosis. Proc Natl Acad Sci USA 101:10596–10601 (2004).
110.
Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing RA, et al: Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182 (1999).
111.
Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, et al: A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168:665–676 (2004).
112.
Liu KJ, Goodman M, Muse S, Smith JS, Buckler E, et al: Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128 (2003).
113.
Ma X-F, Wanous MK, Houchins K, Rodriguez Milla MA, Goicoechea PG, et al: Molecular linkage mapping in rye (Secale cereale L.). Theor Appl Genet 102:517–523 (2001).
114.
Macaulay M, Ramsay L, Powell W, Waugh R: A representative, highly informative ‘genotyping set’ of barley SSRs. Theor Appl Genet 102:801–809 (2001).
115.
MacQueen AJ, Colaiacovo MP, McDonald K, Villeneuve AM: Synapsis-dependent and -independent mechanisms stabilize homolog pairing during meiotic prophase in C. elegans. Genes Dev 16:2428–2442 (2002).
116.
Maestra B, De Jong JH, Shepherd K, Naranjo T: Chromosome arrangement and behaviour of the two rye homologous telosomes at the onset of meiosis in disomic wheat 5RL addition lines with and without the Ph1 locus. Chromosome Res 10:655–667 (2002).
117.
Malyshev S, Korzun V, Voylokov A, Smirnov V, Borner A: Linkage mapping of mutant loci in rye (Secale cereale). Theor Appl Genet 103:70–74 (2001).
118.
Malyshev SV, Dolmatovich TV, Voylokov AV, Sosnikhina SP, Tzvetkova NV, et al: Molecular-genetic mapping of asynaptic genes sy1 and sy9 in rye (Secale cereale) by means of SSR and isozyme markers. Russian J Genet, in press (2007).
119.
Martinez M, Cunado N, Carcelen N, Romero C: The Ph1 and Ph2 loci play different roles in the synaptic behaviour of hexaploid wheat Triticum aestivum. Theor Appl Genet 103:398–405 (2001).
120.
Martinez-Perez E, Shaw P, Reader S, Aragon-Alcaide L, Miller T, et al: Homologous chromosome pairing in wheat. J Cell Sci 112:1761–1769 (1999).
121.
Martinez-Perez E, Shaw P, Aragon-Alcaide L, Moore GM: Chromosomes form into seven groups in hexaploid and tetraploid wheat as a prelude to meiosis. Plant J 36:21–29 (2003).
122.
Masojc P, Myskow B, Milczarski P: Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor Appl Genet 102:1273–1279 (2001).
123.
Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J: Microsatellites in Zea – variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450 (2002a).
124.
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, et al: A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99:6080–6084 (2002b).
125.
May BP, Liu H, Vollbrecht E, Senior L, Rabinowicz PB, et al: Maize-targeted mutagenesis: A knockout resource for maize. Proc Natl Acad Sci USA 100:11541–11546 (2003).
126.
McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, et al: Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207 (2002).
127.
McKim KS, Jang JK, Theurkauf WE, Hawley RS: Mechanical basis of meiotic chromosome arrest. Nature 362:364–366 (1993).
128.
Mello-Sampayo T: Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nat New Biol 230:23–24 (1971).
129.
Mello-Sampayo T, Canas: Suppressors of meiotic chromosome pairing in common wheat. Proceedings of the Fourth International Wheat Genetics Symposium, pp 709–713, Columbia, Missouri (1973).
130.
Mello-Sampayo T, Lorente R: The role of chromosome 3D in the regulation of meiotic pairing in hexaploid wheat. EWAC newsletter 2:16–24 (1968).
131.
Mercier R, Vezon D, Bullier E, Motamayor JC, Sellier A, et al: SWITCH1 (SWI1): a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Genes Dev 15:1859–1871 (2001).
132.
Mercier R, Armstrong S, Horlow C, Jackson NP, Makaroff CA, et al: The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development 130:3309–3318 (2003).
133.
Miftahudin, Ross K, Ma X-F, Mahmoud AA, Layton J, et al: Analysis of expressed sequence tag loci on wheat chromosome group 4. Genetics 168:651–663 (2004).
134.
Mikhailova EI, Naranjo T, Shepherd K, Wennekes van Eden J, Heyting C, et al: The effect of the wheat Ph1 locus on chromatin organisation and meiotic chromosome pairing analysed by genome painting. Chromosoma 107:339–350 (1998).
135.
Mikhailova EI, Sosnikhina SP, Kirillova GA, Tikholiz OA, Smirnov VG, et al: Nuclear dispositions of subtelomeric and pericentromeric chromosomal domains during meiosis in asynaptic mutants of rye (Secale cereale L.). J Cell Sci 114:1875–1882 (2001).
136.
Mikhailova EI, Phillips D, Sosnikhina SP, Lovtsyus AV, Jones RN, et al: Molecular assembly of meiotic proteins Asy1 and Zyp1 and pairing promiscuity in rye (Secale cereale L.) and its synaptic mutant sy10. Genetics 174:1247–1258 (2006).
137.
Miki D, Itoh R, Shimamoto K: RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913 (2005).
138.
Mohan A, Goyal A, Singh R, Balyan HS, Gupta PK: Physical mapping of wheat and rye expressed sequence tag-simple sequence repeats on wheat chromosomes. Crop Sci 47:S3-S13 (2007).
139.
Munkvold JD, Greene RA, Bertmudez-Kandianis CE, La Rota CM, Edwards H, et al: Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168:639–650 (2004).
140.
Murakami H, Nurse P: DNA replication and damage checkpoints and meiotic cell cycle controls in the fission and budding yeasts. Biochem J 349:1–12 (2000).
141.
Nakamura S, Asakawa S, Ohmido N, Fukui K, Shimizu N, et al: Construction of an 800-kb contig in the near-centromere region of the rice blast resistence gene Pi-ta2 using a highly representative rice BAC library. Mol Gen Genet 254:611–620 (1997).
142.
Nasuda S, Kikkawa Y, Ashida T, Islam AKMR, Sato K, et al: Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Systems 80:357–366 (2005).
143.
Neale MJ, Keeney S: Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158 (2006).
144.
Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, et al: Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805 (2004).
145.
Nilmalgoda SD, Cloutier S, Walichnowski AZ: Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46:870–878 (2003).
146.
Nonomura K-I, Nakano M, Murata K, Miyoshi K, Eiguchi M, et al: An insertional mutation in the rice PAIR2 gene, the ortholog of Arabidopsis ASY1, results in a defect in homologous chromosome pairing during meiosis. Mol Gen Genomics 271:121–129 (2004a).
147.
Nonomura KI, Nakano M, Fukuda T, Eiguchi M, Miyao A, et al: The novel gene HOMOLOGOUS PAIRING IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis. Plant Cell 16:1008–1020 (2004b).
148.
Nonomura K-I, Nakano M, Eiguchi M, Suzuki T, Kurata N: PAIR2 is essential for homologous chromosome synapsis in rice meiosis I. J Cell Sci 119:217–225 (2006).
149.
O’Sullivan DM, Ripoll PJ, Rodgers M, Edwards KJ: A maize bacterial artificial chromosome (BAC) library from the European flint inbred line F2. Theor Appl Genet 103:425–432 (2001).
150.
Okamoto M: Asynaptic effect of chromosome V. Wheat Information Services 5:6 (1957).
151.
Osman K, Sanchez-Moran E, Higgins JD, Jones GH, Franklin FCH: Chromosome synapsis in Arabidopsis: analysis of the transverse filament protein ZYP1 reveals novel functions for the synaptonemal complex. Chromosoma 115:212–219 (2006).
152.
Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, et al: An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242 (2003).
153.
Palmer RG: Cytological studies of ameiotic and normal maize with reference to premeiotic pairing. Chromosoma 35:233 (1971).
154.
Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, et al: A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15:1349–1360 (2001).
155.
Pawlowski WP, Golubovskaya IN, Cande WZ: Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition. Plant Cell 15:1807–1816 (2003).
156.
Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, et al: Coordination of meiotic recombination, pairing and synapsis by PHS1. Science 303:89–92 (2004).
157.
Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S, et al: Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623 (2004).
158.
Phillips D, Mikhailova EI, L. Timofejeva L, Mitchell JL, Osina O, et al: Dissecting meiosis of rye using translational proteomics. Ann Bot, in press (2007).
159.
Qi LL, Echalier B, Friebe B, Gill BS: Molecular characterization of a set of wheat deletion stocks for using in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55 (2003).
160.
Qi LL, Echalier B, Chao S, Lazo GR, Butler GE, et al: A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712 (2004).
161.
Ramage RT, Eckhoff JLA: Coordinators report: Desynaptic genes. Barley Genet Newslett 11:90 (1981).
162.
Ramage RT, Eckhoff JLA: Co-ordinator’s report: Desynaptic genes. Barley Genet Newslett 15:80 (1985).
163.
Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, et al: A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005 (2000).
164.
Randhawa HS, Dilbirligi M, Sidhu D, Erayman M, Sandhu D, et al: Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags. Genetics 168:677–686 (2004).
165.
Rice Chromosome 10 Sequencing Consortium: In-depth view of structure, activity, and evolution of rice chromosome 10. Science 300:1566–1569 (2003).
166.
Riley R, Chapman V: Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715 (1958).
167.
Roberts MA, Reader SM, Dalgliesh C, Miller TE, Foote TN, et al: Induction and characterization of Ph1 wheat mutants. Genetics 153:1909–1918 (1999).
168.
Roeder GS: Sex and the single cell: meiosis in yeast. Proc Natl Acad Sci USA 92:10450–10456 (1995).
169.
Roeder GS: Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621 (1997).
170.
Roeder GS, Bailis JM: The pachytene checkpoint. Trends Genet 16:395–403 (2000).
171.
Rostoks N, Borevitz JO, Hedley PE, Russell J, Mudie S, et al: Single-feature polymorphism discovery in the barley transcriptome. Genome Biol 6:R54 (2005a).
172.
Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, et al: Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527 (2005b).
173.
Russell JR, Fuller JD, Macaulay M, Hatz BG, Jahoor A, et al: Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet 95:714–722 (1997).
174.
Safar J, Bartos J, Janda J, Bellec A, Kubalakova M, et al: Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968 (2004).
175.
Saji S, Umehara Y, Antonio BA, Yamane H, Tanoue H, et al: A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome 44:32–37 (2001).
176.
Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, et al: The genome sequence and structure of rice chromosome 1. Nature 420:312–316 (2002).
177.
Scheuring JF, Ramage RT: Reports from coordinators: Desynaptic genes. Barley Genet Newslett 5:86 (1975).
178.
Scheuring JF, Clark DR, Ramage RT: Coordinator’s report: desynaptic genes. Barley Genet Newslett 6:108–109 (1976).
179.
Schlegel R, Melz G, Korzun V: Genes, marker and linkage data of rye (Secale cereale L.): 5th updated inventory. Euphytica 101:23–67 (1998).
180.
Schwarzacher T: Meiosis, recombination and chromosomes: a review of gene isolation and fluorescent in situ hybridization data in plants. J Exp Bot 54:11–23 (2003).
181.
Sears ER: The aneuploids of common wheat. University of Missouri Research Bulletin 572 (1954).
182.
Sears ER: Nullisomic-tetrasomic combinations in hexaploid wheat, in Riley R, Lewis KR (eds): Chromosome Manipulations and Plant Genetics (Oliver and Boyd, Edinburgh 1966).
183.
Sears ER: Genetic control of chromosome pairing in wheat. Ann Rev Genet 10:31–51 (1976).
184.
Sears ER: An induced mutant with homoeologous pairing in common wheat. Canad J Genet Cytol 19:585–593 (1977).
185.
Sears ER: A wheat mutant conditioning an intermediate level of homoeologous chromosome pairing. Can J Genet Cytol 24:715–719 (1982).
186.
Sears ER, Okamoto M: Intergenomic chromosome relationships in hexaploid wheat. Proc Int Congr Genet 2:258–259 (1958).
187.
Sears ER, Sears MS: The telocentric chromosomes of common wheat, in Ramanujam S (ed): Proceedings of the 5th International Wheat Genetics Symposium, pp 389–407, New Delhi (1978).
188.
Senior ML, Murphy JP, Goodman MM, Stuber CW: Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098 (1998).
189.
Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, et al: Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481 (2002).
190.
Shen B, Wang DM, McIntyre CL, Liu CJ: A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theor Appl Genet 111:1489–1494 (2005).
191.
Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, et al: Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135:1198–1205 (2004).
192.
Sheridan WF, Avalkina NA, Shamrov II, Batygina TB, Golubovskaya IN: The mac1 gene: controlling the commitment to the meiotic pathway in maize. Genetics 142:1009–1020 (1996).
193.
Sheridan WF, Golubeva EA, Abrhamova LI, Golubovskaya IN: The mac1 mutation alters the developmental fate of the hypodermal cells and their cellular progeny in the maize anther. Genetics 153:933–941 (1999).
194.
Shimazu J, Niizeki M, Matsukurs C, Tabata S, Ishikawa R, et al: Meiosis-specific gene RiLIM15 expressed in rice cultured cells. Rice Genet Newslett 15:171–172 (1998).
195.
Shimazu J, Matsukura C, Senda M, Ishikawa R, Akada S, et al: Characterization of a DMC1 homologue, RiLIM15, in meiotic panicles, mitotic cultured cells and mature leaves of rice (Oryza sativa L.). Theor Appl Genet 102:1159–1163 (2001).
196.
Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, et al: Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol 11:1825–1835 (2001).
197.
Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D: A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotech 23:75–81 (2005).
198.
Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, et al: An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L): comparisons with data from RFLPS and pedigree. Theor Appl Genet 95:163–173 (1997).
199.
Solari AJ: Primitive forms of meiosis: the possible evolution of meiosis. Biocell 26:1–13 (2002).
200.
Somers DJ, Kirkpatrick R, Moniwa M, Walsh A: Mining single-nucleotide polymorphisms from hexaploid wheat ESTs. Genome 46:431–437 (2003).
201.
Somers DJ, Isaac P, Edwards K: A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114 (2004).
202.
Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, et al: Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560 (2005).
203.
Sosnikhina SP, Fedotova YS, Smirnov VG, Mikhailova EI, Kolomiets OL, et al: Meiotic mutants of rye Secale cereale L. I. Synaptic mutant sy-1. Theor Appl Genet 84:979–985 (1992).
204.
Sosnikhina SP, Fedotova YS, Smirnov VG, Mikhailova EI, Bogdanov YF: The study of genetic control of meiosis in rye. Russ J Genet 30:909–920 (1994).
205.
Sosnikhina SP, Kirillova GA, Mikhailova EI, Smirnov VG, Fedotova YS, et al: Genetic control of synapsis in rye Secale cereale L: The sy9 asynaptic gene. Russ J Genet 34:1278–1285 (1998).
206.
Sosnikhina SP, Mikhailova EI, Tikholiz OA, Priyatkina SN, Smirnov VG, et al: Meiotic mutations in rye Secale cereale L. Cytogenet Genome Res 109:215–220 (2005).
207.
Staiger CJ, Cande WZ: Ameiotic, a gene that controls meiotic chromosome and cytoskeletal behavior in maize. Dev Biol 154:226–230 (1992).
208.
Stein N, Prasad M, Scholz U, Thiel T, Zhang HN, et al: A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839 (2007).
209.
Sutton T, Whitford R, Baumann U, Dong CM, Able JA, et al: The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456 (2003).
210.
Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB: QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228 (2007).
211.
Tenaillon MI, Sawkins MC, Anderson LK, Stack SM, Doebley J, et al: Patterns of diversity and recombination along chromosome 1 of maize (Zea mays ssp. mays L.). Genetics 162:1401–1413 (2002).
212.
Theurkauf WE, Hawley RS: Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol 116:1167–1180 (1992).
213.
Thiel T, Michalek W, Varshney RK, Graner A: Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422 (2003).
214.
Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, et al: Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12 (2004).
215.
Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, et al: Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19 (2007).
216.
Timopheyeva LP, Golubovskaya IN: A new type of desynaptic gene in maize revealed by the microspreading method of synaptonemal complexes. Cytologia 33:3–8 (1991).
217.
Tomkins JP, Davis G, Main D, Yim Y, Duru N, et al: Construction and characterization of a deep-coverage bacterial artificial chromosome library for maize. Crop Sci 42:928–933 (2002).
218.
Torada A, Koike M, Mochida K, Ogihara Y: SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051 (2006).
219.
Umezu K, Sugawara N, Chen C, Haber JE, Kolodner RD: Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148:989–1005 (1998).
220.
Upadhya MD, Swaminathan MS: Mechanism regulating chromosome pairing in Triticum. Biol Zbl 86:239–253 (1967).
221.
Upadhyaya NM, Zhou X-R, Zu Q-H, Ramm K, Wu L, et al: An iAc/Ds gene and enhancer trapping system for insertional mutagensis in rice. Funct Plant Biol 29:547–559 (2002).
222.
Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, et al: Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Sci 168:195–202 (2005).
223.
Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, et al: Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theor Appl Genet 114:1105–1116 (2007).
224.
Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WF, et al: Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19:1251–1260 (2002).
225.
von Wettstein-Knowles P: Cloned and mapped genes: current status, in Shewry PR (ed): Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, pp 73–98 (CAB International, Wallingford 1992).
226.
Wall AM, Riley R, Chapman V: Wheat mutants permitting homoeologous chromosome pairing. Genet Res 18:311–328 (1971).
227.
Wischmann B: Chromosome pairing and chiasma formation in wheat plants triisosomic for the long arm of chromosome 5B. Carlsberg Res Commun 51:1–25 (1986).
228.
Wu C, Li X, Yuan W, Chen G, Kilian A, et al: Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35:418–427 (2003).
229.
Wu J-L, Wu C, Lei C, Baraoidan M, Bordeos A, et al: Chemical- and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97 (2005).
230.
Wu JZ, Maehara T, Shimokawa T, Yamamoto S, Harada C, et al: A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535 (2002).
231.
Yamamoto A, Hiraoka Y: How do meiotic chromosomes meet their homologous partners? Lessons from fission yeast. Bioessays 23:526–533 (2001).
232.
Yamamoto K, Sasaki T: Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144 (1997).
233.
Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, et al: Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696 (2002).
234.
Yim YS, Moak P, Sanchez-Villeda H, Musket TA, Close P, et al: A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics 8:47 (2007).
235.
Yu J, Hu S, Wang J, Wong GK, Li S, et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92 (2002).
236.
Yu JK, Dake TM, Singh S, Benscher D, Li WL, et al: Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818 (2004).
237.
Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, et al: A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genetics 101:1093–1099 (2000).
238.
Zhang H, Sreenivasulu N, Weschke W, Stein N, Rudd S, et al: Large-scale analysis of the barley transcriptome based on expressed sequence tags. Plant J 40:276–290 (2004).
239.
Zhang LR, Tao JY, Wang T: Molecular characterization of OsRAD21-1, a rice homologue of yeast RAD21 essential for mitotic chromosome cohesion. J Exp Bot 55:1149–1152 (2004).
240.
Zhao W, Canaran P, Jurkuta R, Fulton T, Glaubitz J, et al: Panzea: a database and resource for molecular and functional diversity in the maize genome. Nucleic Acids Res 34:D752–D757 (2006).
241.
Zickler D, Kleckner N: Meiotic chromosomes: integrating structure and function. Ann Rev Genet 33:603–754 (1999).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.