We describe the current state of knowledge about transposable elements (TEs) in different mosquito species. DNA-based elements (class II elements), non-LTR retrotransposons (class I elements), and MITEs (Miniature Inverted Repeat Transposable Elements) are found in the three genera, Anopheles, Aedes and Culex, whereas LTR retrotransposons (class I elements) are found only in Anopheles and Aedes. Mosquitoes were the first insects in which MITEs were reported; they have several LTR retrotransposons belonging to the Pao family, which is distinct from the Gypsy-Ty3 and Copia-Ty1 families. The number of TE copies shows huge variations between classes of TEs within a given species (from 1 to 1000), in sharp contrast to Drosophila, which shows only relatively minor differences in copy number between elements (from 1 to 100). The genomes of these insects therefore display major differences in the amount of TEs and therefore in their structure and global composition. We emphasize the need for more population genetic data about the activity of TEs, their distribution over chromosomes and their frequencies in natural populations of mosquitoes, to further the current attempts to develop a transgenic mosquito unable to transmit malaria that is intended to replace the natural populations.   

1.
Abe H, Ohbayashi F, Sugasaki T, Kanehara M, Terada T, Shimada T, Kawai S, Mita K, Kanamori Y, Yamamoto MT, et al.: Two novel Pao-like retrotransposons (Kamikaze and Yamato) from the silkworm species Bombyx mori and B. mandarina: common structural features of Pao-like elements. Mol Genet Genomics 265:375–385 (2001).
2.
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al.: The genome sequence of Drosophila melanogaster. Science 287:2185–2195 (2000).
3.
Agarwal M, Bensaadi N, Salvado JC, Campbell K, Mouches C: Characterization and genetic organization of full-length copies of a LINE retroposon family dispersed in the genome of Culex pipiens mosquitoes. Insect Biochem Mol Biol 23:621–629 (1993).
4.
Anderson JR, Grimstad PR, Severson DW: Chromosomal evolution among six mosquito species (Diptera: Culicidae) based on shared restriction fragment length polymorphisms. Mol Phylogenet Evol 20:316–321 (2001).
5.
Atkinson PW, Pinkerton AC, O’Brochta DA: Genetic transformation systems in insects. Annu Rev Entomol 46:317–346 (2001).
6.
Bensaadi-Merchermek N, Salvado JC, Mouches C: Mosquito transposable elements. Genetica 93:139–148 (1994).
7.
Bensaadi-Merchermek N, Cagnon C, Desmons I, Salvado JC, Karama S, D’Amico F, Mouches C: CM-gag, a transposable-like element reiterated in the genome of Culex pipiens mosquitoes, contains only a gag gene. Genetica 100:141–148 (1997).
8.
Besansky NJ: A retrotransposable element from the mosquito Anopheles gambiae. Mol Cell Biol 10:863–871 (1990a).
9.
Besansky NJ: Evolution of the T1 retroposon family in the Anopheles gambiae complex. Mol Biol Evol 7:229–246 (1990b).
10.
Besansky NJ, Fahey GT: Utility of the white gene in estimating phylogenetic relationships among mosquitoes (Diptera: Culicidae). Mol Biol Evol 14:442–454 (1997).
11.
Besansky NJ, Paskewitz SM, Hamm DM, Collins FH: Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol Cell Biol 12:5102–5110 (1992).
12.
Besansky NJ, Bedell JA, Mukabayire O: Q: a new retrotransposon from the mosquito Anopheles gambiae. Insect Mol Biol 3:49–56 (1994).
13.
Besansky NJ, Mukabayire O, Bedell JA, Lusz H: Pegasus, a small terminal inverted repeat transposable element found in the white gene of Anopheles gambiae. Genetica 98:119–129 (1996).
14.
Biedler J, Tu Z: Non-LTR retrotransposons in the African malaria mosquito, Anopheles gambiae: unprecedented diversity and evidence of recent activity. Mol Biol Evol 20:1811–1825 (2003).
15.
Biedler J, Qi Y, Holligan D, Della Torre A, Wessler S, Tu Z: Transposable element (TE) display and rapid detection of TE insertion polymorphism in the Anopheles gambiae species complex. Insect Mol Biol 12:211–216 (2003).
16.
Biémont C, Cizeron G: Distribution of transposable elements in Drosophila species. Genetica 105:43–62 (1999).
17.
Biémont C, Lemeunier F, Garcia Guerreiro MP, Brookfield JF, Gautier C, Aulard S, Pasyukova EG: Population dynamics of the copia, mdg1, mdg3, gypsy, and P transposable elements in a natural population of Drosophila melanogaster. Genet Res 63:197–212 (1994).
18.
Biémont C, Tsitrone A, Vieira C, Hoogland C: Transposable element distribution in Drosophila. Genetics 147:1997–1999 (1997)
19.
Biessmann H, Walter MF, Le D, Chuan S, Yao JG: Moose, a new family of LTR retrotransposons in the mosquito Anopheles gambiae. Insect Mol Biol 8:201–212 (1999).
20.
Black WC IV, Rai KS: Genome evolution in mosquitoes: intraspecific and interspecific variation in repetitive DNA amounts and organization. Genet Res 51:185–196 (1988).
21.
Boete C, Koella JC: Evolutionary ideas about genetically manipulated mosquitoes and malaria control. Trends Parasitol 19:32–38 (2003).
22.
Capy P, Anxolabéhère D, Langin T: The strange phylogenies of transposable elements: are horizontal transfers the only explantation? Trends Genet 10:7–12 (1994).
23.
Catteruccia F, Godfray HC, Crisanti A: Impact of genetic manipulation on the fitness of Anopheles stephensi mosquitoes. Science 299:1225–1227 (2003).
24.
Charlesworth B, Charlesworth D: The population dynamics of transposable elements. Genet Res 42:1–27 (1983).
25.
Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V: A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298:1415–1418 (2002).
26.
Cook JM, Martin J, Lewin A, Sinden RE, Tristem M: Systematic screening of Anopheles mosquito genomes yields evidence for a major clade of Pao-like retrotransposons. Insect Mol Biol 9:109–117 (2000).
27.
Deininger PL, Batzer MA, Hutchison CA III, Edgell MH: Master genes in mammalian repetitive DNA amplification. Trends Genet 8:307–311 (1992).
28.
Feschotte C, Mouches C: Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene 250:109–116 (2000).
29.
Feschotte C, Fourrier N, Desmons I, Mouches C: Birth of a retroposon: the Twin SINE family from the vector mosquito Culex pipiens may have originated from a dimeric tRNA precursor. Mol Biol Evol 18:74–84 (2001).
30.
Feschotte C, Zhang X, Wessler SR: Miniature inverted-repeat transposable elements and their relationship to established DNA transposons, in Craig NL, Craigie R, Gellert M, Lambowitz AM (eds): Mobile DNA II, pp 1147–1158 (ASM Press, Washington, DC 2002).
31.
Flavell RB: The molecular characterisation and organization of plant chromosomal DNA sequences. Annu Rev Plant Physiol 31:569–596 (1980).
32.
Ganko EW, Bhattacharjee V, Schliekelman P, McDonald JF: Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol Biol Evol 20:1925–1931 (2003).
33.
Gregory TR, Hebert PD: The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 9:317–324 (1999).
34.
Grossman GL, Cornel AJ, Rafferty CS, Robertson HM, Collins FH: Tsessebe, Topi and Tiang: three distinct Tc1-like transposable elements in the malaria vector, Anopheles gambiae. Genetica 105:69–80 (1999).
35.
Hill SR, Leung SS, Quercia NL, Vasiliauskas D, Yu J, Pasic I, Leung D, Tran A, Romans P: Ikirara insertions reveal five new Anopheles gambiae transposable elements in islands of repetitious sequence. J Mol Evol 52:215–231 (2001).
36.
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al: The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129–149 (2002).
37.
Holyoake AJ, Kidwell MG: Vege and Mar: two novel hAT MITE families from Drosophila willistoni. Mol Biol Evol 20:163–167 (2003).
38.
Imwong M, Sharpe RG, Kittayapong P, Baimai V: Distribution of the transposable element mariner in anopheline mosquitoes. Heredity 85:271–276 (2000).
39.
Ito J, Ghosh A, Moreira LA, Wimmer EA, Jacobs-Lorena M: Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417:452–455 (2002).
40.
Jamrich M, Miller OL Jr: The rare transcripts of interrupted rRNA genes in Drosophila melanogaster are processed or degraded during synthesis. EMBO J 3:1541–1545 (1984).
41.
Jordan IK, Rogozin IB, Glazko GV, Koonin EV: Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 19:68–72 (2003).
42.
Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A: IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711 (1999).
43.
Kapitonov VV, Jurka J: Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719 (2001).
44.
Kapitonov VV, Jurka J: Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569–6574 (2003).
45.
Ke Z, Grossman GL, Cornel AJ, Collins FH: Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus. Genetica 98:141–147 (1996).
46.
Kidwell MG, Lisch DR: Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24 (2001).
47.
Krzywinski J, Besansky NJ: Molecular systematics of Anopheles: from subgenera to subpopulations. Annu Rev Entomol 48:111–139 (2003).
48.
Krzywinski J, Wilkerson RC, Besansky NJ: Evolution of mitochondrial and ribosomal gene sequences in anophelinae (Diptera: Culicidae): implications for phylogeny reconstruction. Mol Phylogenet Evol 18:479–487 (2001).
49.
Kumar A, Hirochika H: Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci 6:127–134 (2001).
50.
Kumar A, Rai KS: Intraspecific variation in nuclear DNA content among world populations of a mosquito, Aedes albopictus (Skuse). Theor Appl Genet 79:748–752 (1990).
51.
Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA: Population structure of Anopheles gambiae in Africa. J Hered 94:133–147 (2003).
52.
Lepetit D, Brehm A, Fouillet P, Biémont C: Insertion polymorphism of retrotransposable elements in populations of the insular, endemic species Drosophila madeirensis. Mol Ecol 11:347–354 (2002).
53.
Lerat E, Rizzon C, Biémont C: Sequence divergence within transposable element families in the Drosophila melanogaster genome. Genome Res 13:1889–1896 (2003).
54.
Leung SS, Romans P: Excisions of the Ikirara1 transposon in an Anopheles gambiae cell line. Insect Mol Biol 7:241–248 (1998).
55.
Lovsin N, Gubensek F, Kordis D: Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. Mol Biol Evol 18:2213–2224 (2001).
56.
Luckhart S, Rosenberg R: Gene structure and polymorphism of an invertebrate nitric oxide synthase gene. Gene 232:25–34 (1999).
57.
Malik HS, Eickbush TH: The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Mol Biol Evol 15:1123–1134 (1998).
58.
Malik HS, Burke WD, Eickbush TH: The age and evolution of non-LTR retrotransposable elements. Mol Biol Evol 16:793–805 (1999).
59.
Marin I, Fontdevila A: Evolutionary conservation and molecular characteristics of repetitive sequences of Drosophila koepferae. Heredity 76:355–366 (1996).
60.
Mathiopoulos KD, della Torre A, Predazzi V, Petrarca V, Coluzzi M: Cloning of inversion breakpoints in the Anopheles gambiae complex traces a transposable element at the inversion junction. Proc Natl Acad Sci USA 95:12444–12449 (1998).
61.
Mathiopoulos KD, della Torre A, Santolamazza F, Predazzi V, Petrarca V, Coluzzi M: Are chromosomal inversions induced by transposable elements? A paradigm from the malaria mosquito Anopheles gambiae. Parassitologia 41:119–123 (1999).
62.
Mouches C, Agarwal M, Campbell K, Lemieux L, Abadon M: Sequence of a truncated LINE-like retroposon dispersed in the genome of Culex mosquitoes. Gene 106:279–280 (1991).
63.
Mukabayire O, Besansky NJ: Distribution of T1, Q, Pegasus and mariner transposable elements on the polytene chromosomes of PEST, a standard strain of Anopheles gambiae. Chromosoma 104:585–595 (1996).
64.
Munstermann LE, Conn JE: Systematics of mosquito disease vectors (Diptera, Culicidae): impact of molecular biology and cladistic analysis. Annu Rev Entomol 42:351–369 (1997).
65.
Poulter RT, Goodwin TJ, Butler MI: Vertebrate helentrons and other novel Helitrons. Gene 313:201–212 (2003).
66.
Rai KS, Black WC IV: Mosquito genomes: structure, organization, and evolution. Adv Genet 41:1–33 (1999).
67.
Rao PN, Rai K: Inter and intraspecific variation in nuclear DNA content in Aedes mosquitoes. Heredity 59:253–258 (1987).
68.
Reinert JF: New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. J Am Mosq Control Assoc 16:175–188 (2000).
69.
Rezsohazy R, van Luenen HG, Durbin RM, Plasterk RH: Tc7, a Tc1-hitchhiking transposon in Caenorhabditis elegans. Nucleic Acids Res 25:4048–4054 (1997).
70.
Robertson HM: The mariner transposable element is widespread in insects. Nature 362:241–245 (1993).
71.
Robertson HM, Lampe DJ: Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol Biol Evol 12:850–862 (1995).
72.
Robertson HM, Soto-Adames FN, Walden KKO, Avancini RMP, Lampe DJ: The mariner transposons of animals: horizontally jumping genes, in Syvanen M, Kado C (eds): Horizontal Gene Transfer, pp 268–284 (Chapman and Hall, London 1998).
73.
Rohr CJ, Ranson H, Wang X, Besansky NJ: Structure and evolution of mtanga, a retrotransposon actively expressed on the Y chromosome of the African malaria vector Anopheles gambiae. Mol Biol Evol 19:149–162 (2002).
74.
Romans P, Bhattacharyya RK, Colavita A: Ikirara, a novel transposon family from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 7:1–10 (1998).
75.
Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, Collins FH: Molecular evolutionary analysis of the widespread piggyBac transposon family and related ‘domesticated’ sequences. Mol Genet Genomics 270:173–180 (2003a).
76.
Sarkar A, Sengupta R, Krzywinski J, Wang X, Roth C, Collins FH: P elements are found in the genomes of nematoceran insects of the genus Anopheles. Insect Biochem Mol Biol 33:381–387 (2003b).
77.
Shao H, Tu Z: Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics 159:1103–1115 (2001).
78.
Shao H, Qi Y, Tu Z: MsqTc3, a Tc3-like transposon in the yellow fever mosquito Aedes aegypti. Insect Mol Biol 10:421–425 (2001).
79.
Shedlock AM, Okada N: SINE insertions: powerful tools for molecular systematics. Bioessays 22:148–160 (2000).
80.
Sundararajan P, Atkinson PW, O’Brochta DA: Transposable element interactions in insects: crossmobilization of hobo and Hermes. Insect Mol Biol 8:359–368 (1999).
81.
Tu Z: Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc Natl Acad Sci USA 94:7475–7480 (1997).
82.
Tu Z: Genomic and evolutionary analysis of Feilai, a diverse family of highly reiterated SINEs in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 16:760–772 (1999).
83.
Tu Z: Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 17:1313–1325 (2000).
84.
Tu Z: Maque, a family of extremely short interspersed repetitive elements: characterization, possible mechanism of transposition, and evolutionary implications. Gene 263:247–253 (2001a).
85.
Tu Z: Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 98:1699–1704 (2001b).
86.
Tu Z, Hill JJ: MosquI, a novel family of mosquito retrotransposons distantly related to the Drosophila I factors, may consist of elements of more than one origin. Mol Biol Evol 16:1675–1686 (1999).
87.
Tu Z, Orphanidis SP: Microuli, a family of miniature subterminal inverted-repeat transposable elements (MSITEs): transposition without terminal inverted repeats. Mol Biol Evol 18:893–895 (2001).
88.
Tu Z, Isoe J, Guzova JA: Structural, genomic, and phylogenetic analysis of Lian, a novel family of non-LTR retrotransposons in the yellow fever mosquito, Aedes aegypti. Mol Biol Evol 15:837–853 (1998).
89.
Vieira C, Biémont C: Transposable element dynamics in the two sibling species Drosophila melanogaster and Drosophila simulans. Genetica 120:115–123 (2004).
90.
Vieira C, Nardon C, Arpin C, Lepetit D, Biémont C: Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Mol Biol Evol 19:1154–1161 (2002).
91.
Warren AM, Crampton JM: The Aedes aegypti genome: complexity and organization. Genet Res 58:225–232 (1991).
92.
Warren AM, Hughes MA, Crampton JM: Zebedee: a novel copia-Ty1 family of transposable elements in the genome of the medically important mosquito Aedes aegypti. Mol Gen Genet 254:505–513 (1997).
93.
Xiong Y, Burke WD, Eickbush TH: Pao, a highly divergent retrotransposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucleic Acids Res 21:2117–2123 (1993).
94.
Zdobnov EM, von Mering C, Letunic I, Torrents D, Suyama M, Copley RR, Christophides GK, Thomasova D, Holt RA, Subramanian GM, et al.: Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298:149–159 (2002).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.