The trinucleotide repeats that expand to cause human disease form hairpin structures in vitro that are proposed to be the major source of their genetic instability in vivo. If a replication fork is a train speeding along a track of double-stranded DNA, the trinucleotide repeats are a hairpin curve in the track. Experiments have demonstrated that the train can become derailed at the hairpin curve, resulting in significant damage to the track. Repair of the track often results in contractions and expansions of track length. In this review we introduce the in vitro evidence for why CTG/CAG and CCG/CGG repeats are inherently unstable and discuss how experiments in model organisms have implicated the replication, recombination and repair machinery as contributors to trinucleotide repeat instability in vivo.   

1.
Anvret M, Ahlberg G, Grandell U, Hedberg B, Johnson K, Edstrom L: Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with myotonic dystrophy. Hum molec Genet 2:1397–1400 (1993).
2.
Arai N, Akiyama R, Niimi N, Nakatsubo H, Inoue T: Meiotic contraction of CAG repeats in Saccharomyces cerevisiae. Genes Genet Syst 74:159–167 (1999).
3.
Ashizawa T, Monckton DG, Vaishnav S, Patel BJ, Voskova A, Caskey CT: Instability of the expanded (CTG)n repeats in the myotonin protein kinase gene in cultured lymphoblastoid cell lines from patients with myotonic dystrophy. Genomics 36:47–53 (1996).
4.
Ashley CTJ, Warren ST: Trinucleotide repeat expansion and human disease. A Rev Genet 29:703–728 (1995).
5.
Bacolla A, Gellibolian R, Shimizu M, Amirhaeri S, Kang S, Ohshima K, Larson JE, Harvey SC, Stollar BD, Wells RD: Flexible DNA: genetically unstable CTGCAG and CGGCCG from human hereditary neuromuscular disease genes. J biol Chem 272:16783–16792 (1997).
6.
Bae SH, Bae KH, Kim JA, Seo YS: RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456–461 (2001).
7.
Balakumaran BS, Freudenreich CH, Zakian VA: CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum molec Genet 9:93–100 (2000).
8.
Bambara RA, Murante RS, Henricksen LA: Enzymes and reactions at the eukaryotic DNA replication fork. J biol Chem 272:4647–4650 (1997).
9.
Bierne H, Ehrlich SD, Michel B: Deletions at stalled replication forks occur by two different pathways. EMBO J 16:3332–3340 (1997).
10.
Bowater RP, Jaworski A, Larson JE, Parniewski P, Wells RD: Transcription increases the deletion frequency of long CTG·CAG triplet repeats from plasmids in Escherichia coli. Nucl Acids Res 25:2861–2868 (1997).
11.
Bowater RP, Wells RD: The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. Prog Nucl Acid Res Mol Biol 66:159–202 (2001).
12.
Brosh RM Jr, Bohr VA: Roles of the Werner syndrome protein in pathways required for maintenance of genome stability. Exp Gerontol 37:491–506 (2002).
13.
Bzymek M, Lovett ST: Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc natl Acad Sci, USA 98:8319–8325 (2001).
14.
Chalker AF, Leach DR, Lloyd RG: Escherichia coli sbcC mutants permit stable propagation of DNA replicons containing a long palindrome. Gene 71:201–205 (1988).
15.
Chastain PD, Sinden RR: CTG repeats associated with human genetic disease are inherently flexible. J molec Biol 275:405–411 (1998).
16.
Chen FM: Acid-facilitated supramolecular assembly of G-quadruplexes in d(CGG)4. J biol Chem 270:23090–23096 (1995).
17.
Chen X, Mariappan SSV, Catasti P, Ratliff R, Moyzis RK, Laayoun A, Smith SS, Bradbury EM, Gupta G: Hairpins are formed by the single DNA strands of the fragile X triplet repeats: Structure and biological implications. Proc natl Acad Sci, USA 92:5199–5203 (1995).
18.
Cleary JD, Pearson CE: The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res 100:25–55 (2003).
19.
Cleary JD, Nichol K, Wang YH, Pearson CE: Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nature Genet 31:37–46 (2002).
20.
Cohen H, Sears DD, Zenvirth D, Hieter P, Simchen G: Increased instability of human CTG repeat tracts on yeast artificial chromosomes during gametogenesis. Mol cell Biol 19:4153–4158 (1999).
21.
Connelly JC, De Leau ES, Leach DR: DNA cleavage and degradation by the SbcCD protein complex from Escherichia coli. Nucl Acids Res 27:1039–1046 (1999).
22.
Connelly JC, Leach DR: The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes Cells 1:285–291 (1996).
23.
Connelly JC, Leach DR: Tethering on the brink: the evolutionarily conserved Mre11-Rad50 complex. Trends Biochem Sci 27:410–418 (2002).
24.
Corrette-Bennett SE, Mohlman NL, Rosado Z, Miret JJ, Hess PM, Parker BO, Lahue RS: Efficient repair of large DNA loops in Saccharomyces cerevisiae. Nucl Acids Res 29:4134–4143 (2001).
25.
Corrette-Bennett SE, Parker BO, Mohlman NL, Lahue RS: Correction of large mispaired DNA loops by extracts of Saccharomyces cerevisiae. J biol Chem 274:17605–17611 (1999).
26.
Cromie GA Millar CB Schmidt KH and Leach DR: Palindromes as substrates for multiple pathways of recombination in Escherichia coli. Genetics 154:513–522 (2000).
27.
Cummings CJ, Zoghbi HY: Fourteen and counting: unraveling trinucleotide repeat diseases. Hum molec Genet 9:909–916 (2000).
28.
D’amours D, Jackson SP: The Mre11 complex: at the crossroads of DNA repair and checkpoint signaling. Nature Rev Mol cell Biol 3:317–27 (2002).
29.
Darlow J, Leach D: Secondary structures in d(CGG) and s(CCG) repeat tracts. J biol Chem 22:3–16 (1998).
30.
Darlow JM, Leach DR: Evidence for two preferred hairpin folding patterns in d(CGG)d(CCG) repeat tracts in vivo. J molec Biol 275:17–23 (1998).
31.
Darlow JM, Leach DR: The effects of trinucleotide repeats found in human inherited disorders on palindrome inviability in Escherichia coli suggest hairpin folding preferences in vivo. Genetics 141:825–832 (1995).
32.
Davison A, Leach DR: The effects of nucleotide sequence changes on DNA secondary structure formation in Escherichia coli are consistent with cruciform extrusion in vivo. Genetics 137:361–368 (1994).
33.
Debrauwere H, Buard J, Tessier J, Aubert D, Vergnaud G, Nicolas A: Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks. Nature Genet 23:367–371 (1999).
34.
Debrauwere H, Loeillet S, Lin W, Lopes J, Nicolas A: Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc natl Acad Sci, USA 98:8263–8269 (2001).
35.
Detloff P, White MA, Petes TD: Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisiae. Genetics 132:113–123 (1992).
36.
Eichler EE, Holden JJ, Popovich BW, Reiss AL, Snow K, Thibodeau SN, Richards CS, Ward PA, Nelson DL: Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nature Genetics 8:88–94 (1994).
37.
Fabre E, Dujon B, Richard GF: Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucl Acids Res 30:3540–3547 (2002).
38.
Fojtik P, Vorlickova M: The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH. Nucl Acids Res 29:4684–4690 (2001).
39.
Fresco JR, Alberts BM: The accomodation of noncomplementary bases in helical polyribonucleotides and deoxyribonucleic acid. Proc Natl Acad Sci USA 46:311–321 (1960).
40.
Freudenreich CH, Stavenhagen JB, Zakian VA: Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol cell Biol 17:2090–2098 (1997).
41.
Freudenreich CH, Kantrow SM, Zakian V: Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853–856 (1998).
42.
Fry M, Loeb LA: The fragile X syndrome d(CGG)n nucleotide repeats form a stable tetrahelical structure. Proc natl Acad Sci, USA 91:4950–4954 (1994).
43.
Fry M, Loeb LA: Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J biol Chem 274:12797–12802 (1999).
44.
Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT: Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540 (1995).
45.
Gacy AM, McMurray CT: Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry 37(:9426–9434 (1998).
46.
Gary R, Park MS, Nolan JP, Cornelius HL, Kozyreva OG, Tran HT, Lobachev KS, Resnick MA, Gordenin DA: A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol cell Biol 19:5373–5382 (1999).
47.
Gellibolian R, Bacolla A, Wells RD: Triplet repeat instability and DNA topology: an expansion model based on statistical mechanics. J biol Chem 272:16793–16797 (1997).
48.
Godde JS, Wolffe AP: Nucleosome assembly on CTG triplet repeats. J biol Chem 271:15222–15229 (1996).
49.
Godde JS, Kass SU, Hirst MC, Wolffe AP: Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J biol Chem 271:24325–24328 (1996).
50.
Goellner GM, Tester D, Thibodeau S, Almqvist E, Goldberg YP, Hayden MR, McMurray CT: Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer. Am J hum Genet 60:879–890 (1997).
51.
Gomes-Pereira M, Fortune MT, Monckton DG: Mouse tissue culture models of unstable triplet repeats: in vitro selection for larger alleles mutational expansion bias and tissue specificity but no association with cell division rates. Hum molec Genet 10:845–854 (2001).
52.
Gordenin DA, Kunkel TA, Resnick MA: Repeat expansion – all in a flap? Nature Genetics 16:116–118 (1997).
53.
Gordenin DA, Lobachev KS, Degtyareva NP, Malkova AL, Perkins E, Resnick MA: Inverted DNA repeats: a source of eukaryotic genomic instability. Mol cell Biol 13:5315–5322 (1993).
54.
Gordenin DA, Resnick MA: Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat Res 400:45–58 (1998).
55.
Handt O, Baker E, Dayan S, Gartler SM, Woollatt E, Richards RI, Hansen RS: Analysis of replication timing at the FRA10B and FRA16B fragile site loci. Chrom Res 8:677–688 (2000).
56.
Hansen RS, Canfield TK, Fjeld AD, Mumm S, Laird CD, Gartler SM: A variable domain of delayed replication in FRAXA fragile X chromosomes: X inactivation-like spread of late replication. Proc natl Acad Sci, USA 94:4587–4592 (1997).
57.
Harrington JJ, Lieber MR: The characterization of a mammalian DNA structure-specific endonucleases. EMBO J 13:1235–1246 (1994).
58.
Hartenstine MJ, Goodman MF, Petruska J: Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J biol Chem 275:18382–18390 (2000).
59.
Hashem VI, Rosche WA, Sinden RR: Genetic assays for measuring rates of (CAG)(CTG) repeat instability in Escherichia coli. Mutat Res 502:25–37 (2002).
60.
Henricksen LA, Tom S, Liu Y, Bambara RA: Inhibition of flap endonuclease 1 by flap secondary structure and relevance to repeat sequence expansion. J biol Chem 275:16420–16427 (2000).
61.
Henricksen LA, Veeraraghavan J, Chafin DR, Bambara RA: DNA ligase I competes with FEN1 to expand repetitive DNA sequences in vitro. J biol Chem 277:22361–22369 (2002).
62.
Hirst MC, White PJ: Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure. Nucl Acids Res 26:2353–2358 (1998).
63.
Ireland MJ, Reinke SS, Livingston DM: The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 155:1657–1665 (2000).
64.
Iyer RR, Wells RD: Expansion and deletion of triplet repeat sequences in Escherichia coli occur on the leading strand of DNA replication. J biol Chem 274:3865–3877 (1999).
65.
Iyer RR, Pluciennik A, Rosche WA, Sinden RR, Wells RD: DNA polymerase III mutants enhance the expansion and deletion of triplet repeat sequences in Escherichia coli. J biol Chem 275:2174–2184 (2000).
66.
Jakupciak JP, Wells RD: Genetic instabilities in (CTG·CAG) repeats occur by recombination. J biol Chem 274:23468–23479 (1999).
67.
Jakupciak JP, Wells RD: Genetic instabilities of triplet repeat sequences by recombination. Intl Union Biochem molec Biol Life 50:355–359 (2000).
68.
Jankowski C, Nag DK: Most meiotic CAG repeat tract-length alterations in yeast are SPO11 dependent. Mol Genet Genom 267:64–70 (2002).
69.
Jankowski C, Nasar F, Nag DK: Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc Natl Acad Sci 97:2134–2139 (2000).
70.
Jansen G, Willems P, Coerwinkel M, Nillesen W, Smeets H, Vits L, Howeler C, Brunner H, Wieringa B: Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am J hum Genet 54:575–585 (1994).
71.
Jaworski A, Rosche WA, Gellibolian R, Kang S, Shimizu M, Bowater RP, Sinden RR, Wells RD: Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc Natl Acad Sci 92:11019–11023 (1995).
72.
Ji J, Clegg NJ, Peterson KR, Jackson AL, Laird CD, Loeb LA: in vitro expansion of GGC:GCC repeats: identification of the preferred strand of expansion. Nucl Acids Res 24:2835–2840 (1996).
73.
Jin YH, Obert R, Burgers PM, Kunkel TA, Resnick MA, Gordenin DA: The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc natl Acad Sci, USA 98:5122–5127 (2001).
74.
Jodice C, Malaspina P, Persichetti F, Novelletto A, Spadaro M, Giunti P, Morocutti C, Terrenato L, Harding AE, Frontali M: Effect of trinucleotide repeat length and parental sex on phenotypic variation in spinocerebellar ataxia I. Am J hum Genet 54:959–965 (1994).
75.
Johnson RE, Kowali GK, Prakash L, Prakash S: Requirement of the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science 269:238–240 (1995).
76.
Kaiser MW, Lyamicheva N, Ma W, Miller C, Neri B, Fors L, Lyamichev VI: A comparison of eubacterial and archaeal structure-specific 5′- exonucleases. J biol Chem 274:21387–21394 (1999).
77.
Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PM, Fry M: Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J biol Chem 276:16439–16446 (2001).
78.
Kang S, Jaworski A, Ohshima K, Wells RD: Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genetics 10:213–218 (1995a).
79.
Kang S, Ohshima K, Shimizu M, Amirhaeri S, Wells RD: Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J biol Chem 270:27014–27021 (1995b).
80.
Kang S, Ohshima K, Jaworski A, Wells RD: CTG triplet repeats from the myotonic dystrophy gene are expanded in Escherichia coli distal to the replication origin as a single large event. J molec Biol 258 543–547 (1996).
81.
Kao H-I, Henricksen LA, Liu Y, Bambara RA: Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J biol Chem 277:14379–14389 (2002).
82.
Karthikeyan R, Vonarx EJ, Straffon AF, Simon M, Faye G, Kunz BA: Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J molec Biol 299:405–419 (2000).
83.
Kennedy L, Shelbourne PF: Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington’s disease? Hum molec Genet 9:2539–2544 (2000).
84.
Kettani A, Kumar RA, Patel DJ: Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J molec Biol 254:638–656 (1995).
85.
Khajavi M, Tari AM, Patel NB, Tsuji K, Siwak DR, Meistrich ML, Terry NH, Ashizawa T: “Mitotic drive” of expanded CTG repeats in myotonic dystrophy type 1 (DM1). Hum molec Genet 10:855–863 (2001).
86.
Kokoska RJ, Stefanovic L, Tran HT, Resnick MA, Gordenin DA, Petes TD: Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase d (pol3-t). Mol cell Biol 18:2779–2788 (1998).
87.
Kolodner RD, Marsischky GT: Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9:89–96 (1999).
88.
Kovtun I, McMurray C: Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet 27:407–411 (2001).
89.
Kovtun IV, Therneau TM, McMurray CT: Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington’s disease gene. Hum molec Genet 9:2767–2775 (2000).
90.
Kovtun IV, Goellner G, McMurray CT: Structural features of trinucleotide repeats associated with DNA expansion. Biochem Cell Biol 79:325–336 (2001).
91.
Kramer PR, Pearson CE, Sinden RR: Stability of triplet repeats of myotonic dystrophy and fragile X loci in human mutator mismatch repair cell lines. Hum Genet 98:151–157 (1996).
92.
Kremer B, Almqvist E, Theilmann J, Spence N, Telenius H, Goldberg YP, Hayden MR: Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am J hum Genet 57:343–350 (1995).
93.
Kucherlapati M, Yang K, Kuraguchi M, Zhao J, Lia M, Heyer J, Kane MF, Fan K, Russell R, Brown AM, Kneitz B, Edelmann W, Kolodner RD, Lipkin M, Kucherlapati R: Haploinsufficiency of flap endonuclease (Fen1) leads to rapid tumor progression. Proc natl Acad Sci, USA 99:9924–9929 (2002).
94.
Kunst CB, Warren ST: Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77:853–861 (1994).
95.
Kuryavyi VV, Jovin TM: Triad-DNA: a model for trinucleotide repeats. Nature Genet 9:339–341 (1995).
96.
La Spada AR: Trinucleotide repeat instability: Genetic features and molecular mechanisms. Brain Path 7:943–963 (1997).
97.
Leach DR: Long DNA palindromes cruciform structures genetic instability and secondary structure repair. Bioessays 16:893–900 (1994).
98.
Leach DR, Okely EA, Pinder DJ: Repair by recombination of DNA containing a palindromic sequence. Mol Microbiol 26:597–606 (1997).
99.
Leeflang EP, Zhang L, Tavare S, Hubert R, Srinidhi J, MacDonald ME, Myers RH, De Young M, Wexler NS, Gusella JF, Arnheim N: Single sperm analysis of the trinucleotide repeats in the Huntington’s disease gene: quantification of the mutation frequency spectrum. Hum molec Genet 4:1519–1526 (1995).
100.
Leproust EM, Pearson CE, Sinden RR, Gao X: Unexpected formation of parallel duplex in GAA and TTC trinucleotide repeats of Friedreich’s ataxia. J molec Biol 302:1063–1080 (2000).
101.
Lieber MR: The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication recombination and repair. Bioessays 19:233–240 (1997).
102.
Lindahl T, Wood RD: Quality control by DNA repair. Science 286:1897–1905 (1999).
103.
Littman SJ, Fang WH, Modrich P: Repair of large insertion/deletion heterologies in human nuclear extracts is directed by a 5′ single-strand break and is independent of the mismatch repair system. J biol Chem 274:7474–81 (1999).
104.
Lobachev KS, Shor BM, Tran HT, Taylor W, Keen JD, Resnick MA, Gordenin DA: Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae. Genetics 148:507–524 (1998).
105.
Lobachev KS, Stenger JE, Kozyreva OG, Jurka J, Gordenin DA, Resnick MA: Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J 19:3822–3830 (2000).
106.
Lobachev KS, Gordenin DA, Resnick MA: The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108:183–193 (2002).
107.
Lyons-Darden T, Topal MD: Abasic sites induce triplet-repeat expansion during DNA replication in vitro. J biol Chem 274:25975–25978 (1999a).
108.
Lyons-Darden T, Topal MD: Effects of temperature Mg2+ concentration and mismatches on triplet-repeat expansion during DNA replication in vitro. Nucl Acids Res 27:2235–2240 (1999b).
109.
Malter HE, Iber JC, Willemsen R, De Graaff E, Tarleton JC, Leisti J, Warren ST, Oostra BA: Characterization of the full fragile X syndrome mutation in fetal gametes. Nature Genet 15:165–169 (1997).
110.
Manley K, Shirley TL, Flaherty L, Messer A: Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet 23:471–473 (1999).
111.
Mariappan SV, Catasti P, Chen X, Ratliff R, Moyzis RK, Bradbury EM, Gupta G: Solution structures of the individual single strands of the fragile X DNA triplets (GCC)n(GGC)n. Nucl Acids Res 24:784–792 (1996a).
112.
Mariappan SV, Garcoa AE, Gupta G: Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucl Acids Res 24:775–783 (1996b).
113.
Mariappan SV, Silks LA 3rd, Bradbury EM, Gupta G: Fragile X DNA triplet repeats (GCC)n form hairpins with single hydrogen-bonded cytosinecytosine mispairs at the CpG sites: isotope-edited nuclear magnetic resonance spectroscopy on (GCC)n with selective 15N4-labeled cytosine bases. J molec Biol 283:111–120 (1998a).
114.
Mariappan SV, Silks LA 3rd, Chen X, Springer PA, Wu R, Moyzis RK, Bradbury EM, Garcia AE, Gupta G: Solution structures of the Huntington’s disease DNA triplets (CAG)n. J Biomol Struct Dyn 15:723–744 (1998b).
115.
Mariappan SV, Catasti P, Silks LA 3rd, Bradbury EM, Gupta G: The high-resolution structure of the triplex formed by the GAA/TTC triplet repeat associated with Friedreich’s ataxia. J molec Biol 285:2035–2052 (1999).
116.
Matsumoto Y: Molecular mechanism of PCNA-dependent base excision repair. Prog Nucl Acid Res Mol Biol 68:129–138 (2001).
117.
Maurer DJ, O’Callaghan BL, Livingston DM: Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol cell Biol 16:6617–6622 (1996).
118.
Maurer DJ, O’Callaghan BL, Livingston DM: Mapping the polarity of changes that occur in interrupted CAG repeat tracks in yeast. Mol cell Biol 18:4597–4604 (1998).
119.
McMurray CT: Mechanisms of DNA expansion. Chromosoma 104:2–13 (1995).
120.
McMurray CT: DNA secondary structure: A common and causative factor for expansion in human disease. Proc Natl Acad Sci 96:1823–1825 (1999).
121.
Michel B, Erlich SD, Uzest M: DNA double-strand breaks caused by replication arrest. EMBO J 16:430–438 (1997).
122.
Miret JJ, Pessoa-Brandao and Lahue RS: Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae. Mol cell Biol 17:3382–3387 (1997).
123.
Miret JJ, Pessoa-Brandao and Lahue RS: Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc Natl Acad Sci 95:12438–12443 (1998).
124.
Mitas M: Trinucleotide repeats associated with human disease. Nucl Acids Res 25:2245–2253 (1997).
125.
Mitas M, Yu A, Dill J, Kamp TJ, Chambers EJ, Haworth IS: Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15. Nucl Acids Res 23:1050–1059 (1995).
126.
Modrich P, Lahue R: Mismatch repair in replication fidelity genetic recombination and cancer biology. A Rev Biochem 65:101–133 (1996).
127.
Monckton DG, Wong LJ, Ashizawa T, Caskey CT: Somatic mosaicism germline expansions germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum molec Genet 4:1–8 (1995).
128.
Moore H, Greenwell PW, Liu C-P, Arnheim N, Petes TD: Triplet repeats form secondary structures that escape DNA repair in yeast. Proc Natl Acad Sci USA 96:1504–1509 (1999).
129.
Morel P, Reverdy C, Michel B, Ehrlich SD, Cassuto E: The Role of SOS and flap processing in microsatellite instability in Escherichia coli. Proc Natl Acad Sci USA 95:10003–10008 (1998).
130.
Murante RS, Huang L, Turchi JJ, Bambara RA: The calf 5′- to 3′-exonuclease is also an endonuclease with both activities dependent on primers annealed upstream of the point of cleavage. J biol Chem 269:1191–1196 (1994).
131.
Nag DK, Petes TD: Seven-base-pair inverted repeats in DNA form stable hairpins in vivo in Saccharomyces cerevisiae. Genetics 129:669–673 (1991).
132.
Nag DK, White MA, Petes TD: Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast. Nature 340:318–320 (1989).
133.
Napierala M, Parniewski P, Pluciennik A, Wells RD: Long CTGCAG repeat sequences markedly stimulate intramolecular recombination. J biol Chem 277:34087–34100 (2002).
134.
Nasar F, Jankowski C, Nag DK: Long palindromic sequences induce double-strand breaks during meiosis in yeast. Mol cell Biol 20:3449–3458 (2000).
135.
Nichol K, Pearson CE: CpG methylation modifies the genetic stability of cloned repeat sequences. Genome Res 12:1246–256 (2002).
136.
O’Donnell WT, Warren ST: A decade of molecular studies of fragile X syndrome. A Rev Neurosci 25:315–338 (2002).
137.
O’Hoy KL, Tsilfidis C, Mahadevan MS, Neville CE, Barcelo J, Hunter AG, Korneluk RG: Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission. Science 259:809–812 (1993).
138.
Ohshima K, Kang S, Larson JE, Wells RD: Cloning characterization and properties of seven triplet repeat DNA sequences. J biol Chem 271:16773–16783 (1996).
139.
Ohshima K, Wells RD: Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes. J biol Chem 272:16798–16806 (1997).
140.
Oostra BA, Willems PJ: A fragile gene. BioEssays 17:941–947 (1995).
141.
Otto CJ, Almqvist E, Hayden MR, Andrew SE: The “flap” endonuclease gene FEN1 is excluded as a candidate gene implicated in the CAG repeat expansion underlying Huntington disease. Clin Genet 59:122–127 (2001).
142.
Oussatcheva EA, Hashem VI, Zou Y, Sinden RR, Potaman VN: Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli. J biol Chem 276:30878–30884 (2001).
143.
Pan X, Leach DR: The roles of mutS sbcCD and recA in the propagation of TGG repeats in Escherichia coli. Nucl Acids Res 28:3178–31784 (2000).
144.
Panigrahi GB, Cleary JD, Pearson CE: in vitro (CTG)*(CAG) expansions and deletions by human cell extracts. J biol Chem 277:13926–13934 (2002).
145.
Paques F, Haber JE: Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63:349–404 (1999).
146.
Paques F, Leung WY, Haber JE: Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol cell Biol 18:2045–2054 (1998).
147.
Parniewski P, Bacolla A, Jaworski A, Wells RD: Nucleotide excision repair affects the stability of long transcribed (CTG·CAG) tracts in an orientation-dependent manner in Escherichia coli. Nucl Acids Res 27:616–623 (1999).
148.
Parniewski P, Jaworski A, Wells RD, Bowater RP: Length of CTGCAG repeats determines the influence of mismatch repair on genetic instability. J molec Biol 299:865–874 (2000).
149.
Pearson CE, Sinden RR: Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry 35:5041–5053 (1996).
150.
Pearson CE, Sinden RR: Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr Opin Struct Biol 8:321–330 (1998).
151.
Pearson CE, Ewel A, Acharya S, Fishel RA, Sinden RR: Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum molec Genet 6:1117–1123 (1997).
152.
Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR: Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701–2708 (1998a).
153.
Pearson CE, Wang YH, Griffith JD, Sinden RR: Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n (CAG)n repeats from the myotonic dystrophy locus. Nucl Acids Res 26:816–823 (1998b).
154.
Petruska J, Arnheim N, Goodman MF: Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucl Acids Res 24:1992-1998 (1996).
155.
Petruska J, Hartenstine MJ, Goodman MF: Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J biol Chem 273:5204–5210 (1998).
156.
Pluciennik A, Iyer RR, Napierala M, Larson JE, Filutowicz M, Wells RD: Long CTGCAG repeats from myotonic dystrophy are preferred sites for intermolecular recombination. J biol Chem 277:34074–34086 (2002).
157.
Prolla TA: DNA mismatch repair and cancer. Curr Opin Cell Biol 10:311–316 (1998).
158.
Reagan MS, Pittenger C, Siede W, Friedberg EC: Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J Bacteriol 177:364–371 (1995).
159.
Reddy PS, Housman DE: The complex pathology of trinucleotide repeats. Curr Opin Cell Biol 9:364–372 (1997).
160.
Richard GF, Paques F: Mini- and microsatellite expansions: the recombination connection. EMBO Rep 1:122–126 (2000).
161.
Richard G-F, Dujon B, Haber JE: Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol gen Genet 261:871–882 (1999).
162.
Richard GF, Goellner GM, McMurray CT, Haber JE: Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J 19:2381–2390 (2000).
163.
Richards RI: Dynamic mutations: a decade of unstable expanded repeats in human genetic disease. Hum molec Genet 10:2187–2194 (2001).
164.
Richards RI, Sutherland GR: Dynamic mutations: a new class of mutations causing human disease. Cell 70:709–712 (1992).
165.
Richards RI, Sutherland GR: Simple repeat DNA is not replicated simply. Nature Genet 6:114–116 (1994).
166.
Rolfsmeier ML, Lahue RS: Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae. Mol cell Biol 20:173–180 (2000).
167.
Rolfsmeier ML, Dixon MJ, Lahue RS: Mismatch repair blocks expansions of interrupted trinucleotide repeats in yeast. Mol Cell 6:1501–1507 (2000).
168.
Rolfsmeier ML, Dixon MJ, Pessoa-Brandao L, Pelletier R, Miret JJ, Lahue RS: Cis-elements governing trinucleotide repeat instability in Saccharomyces cerevisiae. Genetics 157:1569–1579 (2001).
169.
Rosche WA, Jaworski A, Kang S, Kramer SF, Larson JE, Geidroc DP, Wells RD, Sinden RR: Single-stranded DNA-binding protein enhances the stability of CTG triplet repeats in Escherichia coli. J Bacteriol 178:5042–5044 (1996).
170.
Sakamoto N, Chastain PD, Parniewski P, Ohshima K, Pandolfo M, Griffith JD, Wells RD: Sticky DNA: self-association properties of long GAATTC repeats in RRY triplex structures from Friedreich’s ataxia. Mol Cell 3:465–475 (1999).
171.
Samadashwily GM, Raca G, Mirkin SM: Trinucleotide repeats affect DNA replication in vivo. Nature Genet 17:298–304 (1997).
172.
Sancar A: Mechanisms of DNA excision repair. Science 266:1954–1956 (1994).
173.
Sarkar PS, Chang H-C, Boudi B, Reddy S: CTG repeats show bimodal amplification in E. coli. Cell 95:531–540 (1998).
174.
Schlotterer C, Tautz D: Slippage synthesis of simple sequence DNA. Nucl Acids Res 20:211–215 (1992).
175.
Schmidt KH, Abbott CM, Leach DRF: Two opposing effects of mismatch repair on CTG repeat instability in Echerichia coli. Mol Microbiol 35:463–471 (2000).
176.
Schumacher S, Fuchs RP, Bichara M: Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited. J molec Biol 279:1101–1110 (1998).
177.
Schumacher S, Pinet I, Bichara M: Modulation of transcription reveals a new mechanism of triplet repeat instability in Escherichia coli. J molec Biol 307:39–49 (2001).
178.
Schweitzer JK, Livingston DM: Destabilization of CAG trinucleotide repeat tracts by mismatch repair mutations in yeast. Hum molec Genet 6:349–355 (1997).
179.
Schweitzer JK, Livingston DM: Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum molec Genet 7:69–74 (1998).
180.
Schweitzer JK, Livingston DM: The effect of DNA replication mutations on CAG Tract stability in yeast genetics. Society Am 152:953–963 (1999).
181.
Schweitzer JK, Reinke SS, Livingston DM: Meiotic alterations in CAG repeat tracts. Genetics 159:1861–1865 (2001).
182.
Sharples GJ, Leach DR: Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol Microbiol 17:1215–1217 (1995).
183.
Shelbourne P, Winqvist R, Kunert E, Davies J, Leisti J, Thiele H, Bachmann H, Buxton J, Williamson B, Johnson K: Unstable DNA may be responsible for the incomplete penetrance of the myotonic dystrophy phenotype. Hum molec Genet 1:467–473 (1992).
184.
Shimizu M, Gellibolian R, Oostra BA, Wells RD: Cloning, characterization and properties of plasmids containing CGG triplet repeats from the FMR-1 gene. J molec Biol 258:614–626 (1996).
185.
Sinden RR: Human genetics ’99: Trinucleotide repeats, biological implications of the DNA structures associated with disease-causing triplet repeats. Am J hum Genet 64:346–353 (1999).
186.
Sinden RR, Wells RD: DNA structure, mutations and human genetic disease. Curr Opin Biotechnol 3:612–622 (1992).
187.
Smith FW, Schultze P, Feigon J: Solution structures of unimolecular quadruplexes formed by oligonucleotides containing Oxytricha telomere repeats. Structure 3:997–1008 (1995).
188.
Snow K, Tester DJ, Kruckeberg KE, Schaid DJ, Thibodeau SN: Sequence analysis of the fragile X trinucleotide repeat: implications for the origin of the fragile X mutation. Hum molec Genet 3:1543–1551 (1994).
189.
Sommers CH, Miller EJ, Dujon B, Prakash S, Prakash L: Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′- to 3′-exonuclease required for lagging strand synthesis in reconstituted systems. J biol Chem 270:4193–4196 (1995).
190.
Spiro C, Pelletier R, Rolfsmeir ML, Dixon MJ, Lahue RS, Gupta G, Park MS, Chen X, Mariapp SV, McMurray CT: Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol Cell 4:1079–1085 (1999).
191.
Strand M, Prolla TA, Liskay RM, Petes TD: Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276 (1993).
192.
Streisinger G, Okada Y, Emrich J, Newton J, Tsugita A, Terzaghi E, Inouye M: Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp quant Biol 31:77–84 (1966).
193.
Sullivan AK, Crawford DC, Scott EH, Leslie ML, Sherman SL: Paternally transmitted FMR1 alleles are less stable than maternally transmitted alleles in the common and intermediate size range. Am J hum Genet 70:1532–1544 (2002).
194.
Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, Warren ST: DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum molec Genet 1:397–400 (1992).
195.
Sutherland GR, Baker E, Richards RI: Fragile sites still breaking. Trends Genet 14:501–506 (1998).
196.
Symington LS: Homologous recombination is required for the viability of rad27 mutants. Nucl Acids Res 26:5589–5595 (1998).
197.
Thornton CA, Johnson K, Moxley RT 3rd: Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 35:104–107 (1994).
198.
Timchenko LT, Caskey CT: Triplet repeat disorders: discussion of molecular mechanisms. Cell Mol Life Sci 55:1432–1447 (1999).
199.
Tishkoff DX, Filosi N, Gaida GA, Kolodner RD: A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253–263 (1997).
200.
Tran H, Degtyareva N, Gordenin D, Resnick MA: Altered replication and inverted repeats induce mismatch repair-independent recombination between highly diverged DNAs in yeast. Mol cell Biol 17:1027–1036 (1997).
201.
Tran HT, Degtyareva NP, Koloteva NN, Sugino A, Masumoto H, Gordenin DA, Resnick MA: Replication slippage between distant short repeats in Saccharomyces cervisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mol cell Biol 15:5607–5617 (1995).
202.
Trinh TQ, Sinden RR: Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352:544–547 (1991).
203.
Uliel L, Weisman-Shomer P, Oren-Jazan H, Newcomb T, Loeb LA, Fry M: Human Ku antigen tightly binds and stabilizes a tetrahelical form of the Fragile X syndrome d(CGG)n expanded sequence. J biol Chem 275:33134–33141 (2000).
204.
Umar A, Boyer JC, Kunkel TA: DNA loop repair by human cell extracts. Science 266:814–816 (1994).
205.
Usdin K: NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases. Nucl Acids Res 26:4078–4085 (1998).
206.
Usdin K, Grabczyk E: DNA repeat expansions and human disease. Cell Mol Life Sci 57:914–931 (2000).
207.
Usdin K, Woodford KJ: CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucl Acids Res 23:4202–4209 (1995).
208.
Van Den Broek WJ, Nelen MR, Wansink DG, Coerwinkel MM, Te Riele H, Groenen PJ, Wieringa B: Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch- repair proteins. Hum molec Genet 11:191–198 (2002).
209.
Veaute X, Fuchs RPP: Greater susceptibility to mutations in lagging strand of DNA replication in Escherichia coli than in leading strand. Science 261:598–600 (1993).
210.
Vetcher AA, Napierala M, Iyer RR, Chastain PD, Griffith JD, Wells RD: Sticky DNA a long GAA· GAA·TTC triplex that is formed intramolecularly in the sequence of intron 1 of the frataxin gene. J biol Chem 277:39217–39227 (2002).
211.
Viguera E, Canceill D, Ehrlich SD: Replication slippage involves DNA polymerase pausing and dissociation. EMBO J 20:2587–2595 (2001).
212.
Vilette D, Uzest M, Ehrlich SD, Michel B: DNA transcription and repressor binding affect deletion formation in Escherichia coli plasmids. EMBO J 11:3629–3634 (1992).
213.
Wang Y-H, Griffith J: Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics 25:570–573 (1995).
214.
Wang YH, Griffith J: Methylation of expanded CCG triplet repeat DNA from fragile X syndrome patients enhances nucleosome exclusion. J biol Chem 271:22937–22940 (1996).
215.
Wang Y-H, Amirhaeri S, Kang S, Wells RD, Griffith JD: Preferential nucleosome assembly at DNA triplet repeats from the myotonic dystrophy gene. Science 265:669–671 (1994).
216.
Wang YH, Gellibolian R, Shimizu M, Wells RD, Griffith J: Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. J molec Biol 263:511–516 (1996).
217.
Weisman-Shomer P, Cohen E, Fry M: Interruption of the fragile X syndrome expanded sequence d(CGG)(n) by interspersed d(AGG) trinucleotides diminishes the formation and stability of d(CGG)(n) tetrahelical structures. Nucl Acids Res 28:1535–1541 (2000a).
218.
Weisman-Shomer P, Naot Y, Fry M: Tetrahelical forms of the fragile X syndrome expanded sequence d(CGG)(n) are destabilized by two heterogeneous nuclear ribonucleoprotein-related telomeric DNA-binding proteins. J biol Chem 275:2231–2238 (2000b).
219.
Wells RD, Parniewski P, Pluciennik A, Bacolla A, Gellibolian R, Jaworski A: Small slipped register genetic instabilities in Escherichia coli in triplet repeat sequences associated with hereditary neurological diseases. J biol Chem 273:19532–19541 (1998).
220.
Wenger SL, Giangreco CA, Tarleton J, Wessel HB: Inability to induce fragile sites at CTG repeats in congenital myotonic dystrophy. Am J med Gen 66:60–63 (1996).
221.
White PJ, Borts RH, Hirst MC: Stability of the human fragile X (CGG)n triplet repeat array in Saccharomyces cerevisiae deficient in aspects of DNA metabolism. Mol cell Biol 19:5675–5684 (1999).
222.
Wohrle D, Salat U, Glaser D, Mucke J, Meisel-Stosiek M, Schindler D, Vogel W, Steinbach P: Unusual mutations in high functioning fragile X males: apparent instability of expanded unmethylated CGG repeats. J med Genet 35:103–111 (1998).
223.
Wong LJ, Ashizawa T, Monckton DG, Caskey CT, Richards CS: Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am J hum Genet 56:114–122 (1995).
224.
Yu A, Dill J, Mitas M: The purine-rich trinucleotide repeat sequences d(CAG)15 and d(GAC)15 form hairpins. Nucl Acids Res 23:4055–4057 (1995a).
225.
Yu A, Dill J, Wirth SA, Huang G, Lee VH, Haworth IS, Mitas M: The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation. Nucl Acids Res 23:2706–2714 (1995b).
226.
Yu A, Barron MD, Romero RM, Christy M, Gold B, Dai J, Gray DM, Haworth IS, Mitas M: At physiological pH d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. Biochemistry 36:3687–3699 (1997).
227.
Yu S, Mangelsdorf M, Hewett D, Hobson L, Baker E, Eyre HJ, Lapsys N, Paslier DL, Doggett NA, Sutherland GR, Richards RI: Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 88:367–374 (1997).
228.
Zhang L, Leeflang EP, Yu J, Arnheim N: Studying human mutations by sperm typing: instability of CAG trinucleotide repeats in the human androgen receptor gene. Nature Genet 7:531–535 (1994).
229.
Zhang L, Fischbeck KH, Arnheim N: CAG repeat length variation in sperm from a patient with Kennedy’s disease. Hum molec Genet 4:303–305 (1995).
230.
Zheng M, Huang X, Smith GK, Yang X, Gao X: Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. J molec Biol 264:323–336 (1996).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.