In Japan, multiple system atrophy (MSA) accounts for 40% of all spinocerebellar ataxias (SCAs) and hereditary disorders account for 30%. Among the latter, autosomal dominant disorders are common and recessive ataxias are rare. Although the frequency of SCA genotypes differs between geographic regions throughout Japan, SCA6, SCA3/MJD, and DRPLA are the three major disorders, while SCA7, SCA8, SCA10, SCA12, and SCA17 are infrequent or almost undetected. SCA1 predominantly occurs in the northern part of Japan. Overall, 20–40% of dominant SCAs are due to unknown mutations. From this cluster, pure cerebellar ataxias linked with the SCA4, SCA14, and SCA16 locus have been isolated. Among the recessive SCAs, patients with AVED and EAOH have been detected. However, FRDA associated with GAA repeat expansion in the frataxin gene has not been reported so far.   

1.
2.
Abe T, Tsuda T, Yoshida M, Wada Y, Kano T, Itoyama Y, Tamai M: Macular degeneration associated with aberrant expansion of trinucleotide repeat of the SCA7 gene in 2 Japanese families. Arch Ophthalmol 118:1415–1421 (2000).
3.
Bomont P, Watanabe M, Gershoni-Barush R, Shizuka M, Tanaka M, Sugano J, Guiraud-Chaumeil C, Koenig M: Homozygosity mapping of spinocerebellar ataxia with cerebellar atrophy and peripheral neuropathy to 9q33→q34, and with hearing impairment and optic atrophy to 6p21→p23. Eur J hum Genet 8:986–990 (2000).
4.
Brkanac Z, Bylenok L, Fernandez M, Matsushita M, Lipe H, Wolff J, Nochlin D, Raskind WH, Bird TD: A new dominant spinocerebellar ataxia linked to chromosome 19q13.4→qter. Arch Neurol 59:1291–1295 (2002).
5.
Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, Pericak-Vance MA, Vance JM: The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nature Genet 7:521–524 (1994).
6.
Campuzano V, Montermini L, MoltÒ MD, Pianese L, Cossée M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Cañizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel J-L, Cocozza S, Koenig M, Pandolfo M: Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–7 (1996).
7.
Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S: Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nature Genet 29:184–188 (2001).
8.
David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A: Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genet 17:65–70 (1997).
9.
Endo K, Sasaki H, Wakisaka A, Tanaka H, Saito M, Igarashi S, Takiyama Y, Sanpei K, Iwabuchi K, Suzuki Y, Onari K, Suzuki T, Weissenbach J, Weber JL, Nomura Y, Segawa M, Nishizawa M, Tsuji S: Strong linkage disequilibrium and haplotype analysis in Japanese pedigrees with Machado-Joseph disease. Am J med Genet 67:437–444 (1996).
10.
Engert JC, Berube P, Mercier J, Dore C, Lepage P, Ge B, Bouchard JP, Mathieu J, Melancon SB, Schalling M, Lander ES, Morgan K, Hudson TJ, Richter A: ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nature Genet 24:120–125 (2000).
11.
Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I, Calabrese O, Salvatore E, De Michele G, Riggio MC, Pareyson D, Gellera C, Di Donato S. Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur Neurol 44:31–36 (2000).
12.
Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, Kaplan C, Ptacek LJ: Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J hum Genet 59:392–399 (1996).
13.
Futamura N, Matsumura R, Ueno S: Regional feature of hereditary cerebellar degeneration in Kinki district of Japan. Sinkeinaika (Tokyo) 53:122–126 (2000).
14.
Geschwind DH, Perlman S, Figueroa KP, Karrim J, Baloh RW, Pulst SM: Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 49:1247–1251 (1997).
15.
Gotoda T, Arita M, Arai H, Inoue K, Yokota T, Fukuo Y, Yazaki Y, Yamada N: Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the alpha-tocopherol-transfer protein. New Eng J Med 333:1313–1318 (1995).
16.
Harding AE: Clinical features and classification of inherited ataxias, in Harding AE, Deufel T (eds): Advances in Neurology, vol 61, Inherited ataxias, pp 1–14 (Raven Press, New York 1993).
17.
Herman-Bert A, Stevanin G, Netter J-C, Rascol O, Brassat D, Calvas P, Camuzat A, Yuan Q, Schalling M, Dürr A, Brice A: Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3→q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J hum Genet 67:229–235 (2000).
18.
Hirayama K, Takayanagi T, Nakamura R, Yanagisawa N, Hattori T, Kita K, Yanagimoto S, Fujita M, Nagaoka M, Satomura Y, Sobue I, Iizuka R, Toyokura Y, Satoyoshi E: Spinocerebellar degenerations in Japan: a nationwide epidemiological and clinical study. Acta Neurol Scand Suppl 153:1–22 (1994).
19.
Hokezu Y, Takiyama Y, Sakoe K, Nagamatsu K: A familial case of spinocerebellar ataxia type 8 (SCA8) – its clinical findings and an issue about the genetic basis. Rinsho Shinkeigaku (Tokyo) 40:1116–1121 (2000).
20.
Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, Kwak NG, Ingersoll-Ashworth RG, Sherr M, Sumner AJ, Sharp AH, Ananth U, Seltzer WK, Boss MA, Vieria-Saecker AM, Epplen JT, Riess O, Ross CA, Margolis RL: Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nature Genet 23:391–392 (1999).
21.
Ichikawa Y, Goto J: Regional feature of hereditary spinocerebellar degeneration in Kanto district of Japan. Sinkeinaika (Tokyo) 53:104–110 (2000).
22.
Ihara T, Sasaki H, Wakisaka A, Takada A, Yoshiki T, Matsuura T, Hamada T, Suzuki Y, Tashiro K: Genetic heterogeneity of dominantly inherited olivoponto-cerebellar atrophy (OPCA) in the Japanese: Linkage study of two pedigrees and evidence for the disease locus on chromosome 12q (SCA2). Jpn J hum Genet 39:305–313 (1994).
23.
Ikeda K, Nakagawa M, Osame M: Regional feature of hereditary spinocerebellar degeneration in South-Kyushu and Okinawa island of Japan. Sinkeinaika (Tokyo) 53:130–133 (2000).
24.
Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M: Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 54:950–955 (2000).
25.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Dürr A, Didierjean O, Stevanin G, Agid Y, Brice A: Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet 14:285–291 (1996).
26.
Ishikawa K, Tanaka H, Saito M, Ohkoshi N, Fujita T, Yoshizawa K, Ikeuchi T, Watanabe M, Hayashi A, Takiyama Y, Nishizawa M, Nakano I, Matsubayashi K, Miwa M, Shoji S, Kanazawa I, Tsuji S, Mizusawa H: Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1→p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am J hum Genet 61:336–346 (1997).
27.
Jardim LB, Silveira I, Pereira ML, Ferro A, Alonso I, do Ceu Moreira M, Mendonca P, Ferreirinha F, Sequeiros J, Giugliani R: A survey of spinocerebellar ataxia in South Brazil – 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol 248:870–876 (2001).
28.
Jin DK, Oh MR, Song SM, Koh SW, Lee M, Kim GM, Lee WY, Chung CS, Lee KH, Im JH, Lee MJ, Kim JW, Lee MS: Frequency of spinocerebellar ataxia types 1, 2, 3, 6, 7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 246:207–10 (1999).
29.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A: CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genet 8:221–228 (1994).
30.
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S: Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nature Genet 6:9–13 (1994).
31.
Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S: A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum molec Genet 8:2047–2053 (1999).
32.
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, Ranum LP: An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nature Genet 21:379–84 (1999).
33.
Maruyama H, Kawakami H, Nakamura S: Regional feature of hereditary spinocerebellar degeneration in Chugoku – Shikoku district of Japan. Sinkeinaika (Tokyo) 53:127–129 (2000).
34.
Maruyama H, Izumi Y, Morino H, Oda M, Toji H, Nakamura S, Kawakami H: Difference in disease free survival curve and regional distribution according to subtype of spinocerebellar ataxia: A study of 1,286 Japanese patients. Am J med Genet 114:578–583 (2002).
35.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, Khajavi M, McCall AE, Davis CF, Zu L, Achari M, Pulst SM, Alonso E, Noebels JL, Nelson DL, Zoghbi HY, Ashizawa T: Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nature Genet 26:191–194 (2000).
36.
Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, Furuya H, Yamamoto K, Sakai K, Sasazuki T, Kira J: A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1→q24.1. Neurology 57:96–100 (2001).
37.
Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonca P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M: The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nature Genet 29:189–193 (2001).
38.
Mori M, Adachi Y, Kusumi M, Nakashima K: A genetic epidemiological study of spinocerebellar ataxias in Tottori prefecture, Japan. Neuroepidemiol 20:144–149 (2001).
39.
Moseley ML, Benzow KA, Schut LJ, Bird TD, Gomez CM, Barkhaus PE, Blindauer KA, Labuda M, Pandolfo M, Koob MD, Ranum LP. Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51:1666–1671 (1998).
40.
Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, Yamada M: Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genet 6:14–18 (1994).
41.
Nagaoka U, Takashima M, Ishikawa K, Yoshizawa K, Yoshizawa T, Ishikawa M, Yamawaki T, Shoji S, Mizusawa H: A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 54:1971–1975 (2000).
42.
Naito H, Oyanagi S: Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32:798–807 (1982).
43.
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I: SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum molec Genet 10:1441–1448 (2001).
44.
Nemeth AH, Bochukova E, Dunne E, Huson SM, Elston J, Hannan MA, Jackson M, Chapman CJ, Taylor AM: Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J hum Genet 67:1320–1326 (2000).
45.
Nikali K, Suomalainen A, Terwilliger J, Koskinen T, Weissenbach J, Peltonen L: Random search for shared chromosomal regions in four affected individuals: the assignment of a new hereditary ataxia locus. Am J hum Genet 56:1088–1095 (1995).
46.
Onodera Y, Aoki M, Tsuda T, Kato H, Nagata T, Kameya T, Abe K, Itoyama Y: High prevalence of spinocerebellar ataxia type 1 (SCA1) in an isolated region of Japan. J Neurol Sci 178:153–158 (2000).
47.
Orozco Diaz G, Nodarse Fleites A, Cordovés Sagaz R, Auburger G: Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguín, Cuba. Neurology 40:1369–1375 (1990).
48.
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genet 4:221–226 (1993).
49.
Pujana MA, Corral J, Gratacos M, Combarros O, Berciano J, Genis D, Banchs I, Estivill X, Volpini V. Spinocerebellar ataxias in Spanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet 104:516–522 (1999).
50.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S: Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet 14:269–276 (1996).
51.
Ranum LPW, Schut LJ, Lundgren JK, Orr HT, Livingston DM: Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nature Genet 8:280–284 (1994).
52.
Rosenberg RN: Machado-Joseph disease: an autosomal dominant motor system degeneration. Mov Disord 7:193–203 (1992).
53.
Sakai T, Ohta M, Ishino H: Joseph disease in a non-Portuguese family. Neurology 33:74–80 (1983).
54.
Saleem Q, Choudhry S, Mukerji M, Bashyam L, Padma MV, Chakravarthy A, Maheshwari MC, Jain S, Brahmachari SK: Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum Genet 106:179–187 (2000).
55.
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S: Identification of the gene for spinocerebellar ataxia type 2 (SCA2) using a direct identification of repeat expansion and cloning technique (DIRECT). Nature Genet 14:277–284 (1996).
56.
Sasaki H, Hamada T, Wakisaka A, Tashiro K: A clinical study of a family affected with HLA-linked hereditary spinocerebellar ataxia. No To Shinkei (Tokyo) 42:1103–1111 (1990).
57.
Sasaki H, Fukazawa T, Wakisaka A, Hamada K, Hamada T, Koyama T, Tsuji K, Tashiro K: Central phenotype and related varieties of spinocerebellar ataxia 2 (SCA2) – a clinical and genetic study with a pedigree in the Japanese. J Neurol Sci 144:176–181 (1996).
58.
Sasaki H, Yabe I, Yamashita I, Tashiro K: Prevalence of triplet repeat expansion in ataxia patients in Hokkaido, the northernmost island of Japan. J Neurol Sci 175:45–51 (2000).
59.
Shimohata M, Onodera O, Tsuji S: Regional feature of hereditary spinocerebellar degeneration in Shinetsu – Hokuriku district of Japan. Sinkeinaika (Tokyo) 53:111–115 (2000).
60.
Silveira I, Coutinho P, Maciel P, Gaspar C, Hayes S, Dias A, Guimaraes J, Loureiro L, Sequeiros J, Rouleau GA: Analysis of SCA1, DRPLA, MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families. Am J med Genet 81:134–138 (1998).
61.
Soong BW, Lu YC, Choo KB, Lee HY: Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 58:1105–1109 (2001).
62.
Stevanin G, Dürr A, David G, Didierjean O, Cancel G, Rivaud S, Tourbah A, Warter JM, Agid Y, Brice A: Clinical and molecular features of spinocerebellar ataxia type 6. Neurology 49:1243–1246 (1997).
63.
Storey E, du Sart D, Shaw JH, Lorentzos P, Kelly L, McKinley Gardner RJ, Forrest SM, Biros I, Nicholson GA: Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J med Genet 95:351–357 (2000).
64.
Sugawara M, Toyoshima I, Kato K, Wada C, Imota T, Hirota K, Ishiguro H, Kagaya H, Hirata A, Ogasawara M, Masamune I: Hereditary ataxias in Akita prefecture. Rinsho Shinkeigaku (Tokyo) 39:763–766 (1999).
65.
Suzuki Y, Sasaki H, Wakisaka A, Takada A, Yoshiki T, Iwabuchi K, Tashiro K, Fukazawa T, Hamada T: Spinocerebellar ataxia 1 (SCA1) in the Japanese: Analysis of CAG trinucleotide repeat expansion and instability of the repeat for paternal transmission. Jpn J hum Genet 40:131–143 (1995).
66.
Swartz BE, Burmeister M, Somers JT, Rottach KG, Bespalova IN, Leigh RJ: A form of inherited cerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann NY Acad Sci 956:441–444 (2002).
67.
Takano H, Cancel G, Ikeuchi T, Lorenzetti D, Mawad R, Stevanin G, Didierjean O, Durr A, Oyake M, Shimohata T, Sasaki R, Koide R, Igarashi S, Hayashi S, Takiyama Y, Nishizawa M, Tanaka H, Zoghbi H, Brice A, Tsuji S: Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG-repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am J hum Genet 63:1060–1066 (1998).
68.
Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, Shimazaki H, Soutome M, Endo K, Ohta S, Kagawa Y, Kanazawa I, Mizuno Y, Yoshida M, Yuasa T, Horikawa Y, Oyanagi K, Nagai H, Kondo T, Inuzuka T, Onodera O, Tsuji S: The gene for Machado-Joseph disease maps to human chromosome 14q. Nature Genet 4:300–304 (1993).
69.
Tanaka F, Watanabe H, Sobue G: Regional feature of hereditary spinocerebellar degeneration in Tokai district of Japan. Sinkeinaika (Tokyo) 53:116–121 (2000).
70.
Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J. Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 57:540–544 (2000).
71.
Verbeek DS, Schelhaas JH, Ippel EF, Beemer FA, Pearson PL, Sinke RJ: Identification of a novel SCA locus (SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21→q21. Hum Genet 111:388–393 (2002).
72.
Vuillaume I, Devos D, Schraen-Maschke S, Dina C, Lemainque A, Vasseur F, Bocquillon G, Devos P, Kocinski C, Marzys C, Destee A, Sablonniere B: A new locus for spinocerebellar ataxia (SCA21) maps to chromosome 7p21.3→p15.1. Ann Neurol 52:666–670 (2002).
73.
Wakisaka A, Sasaki H, Takada A, Fukazawa T, Suzuki Y, Hamada T, Iwabuchi K, Tashiro K, Yoshiki T: Spinocerebellar ataxia 1 (SCA1) in the Japanese in Hokkaido may derive from a single common ancestry. J med Genet 32:590–592 (1995).
74.
van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, Maat-Kievit JA, Dooijes D, Notermans NC, Lindhout D, Knoers NV, Kremer HP: Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 58:702–708 (2002).
75.
Watanabe M, Sugai Y, Concannon P, Koenig M, Schmitt M, Sato M, Shizuka M, Mizushima K, Ikeda Y, Tomidokoro Y, Okamoto K, Shoji M: Familial spinocerebellar ataxia with cerebellar atrophy, peripheral neuropathy, and elevated level of serum creatine kinase, γ-globulin, and a-fetoprotein. Ann Neurol 44:265–269 (1998).
76.
Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW: Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14→21.3. Am J hum Genet 65:420–426 (1999).
77.
Yabe I, Sasaki H, Matsuura T, Takada A, Wakisaka A, Suzuki Y, Fukazawa T, Hamada T, Oda T, Ohnishi A, Tashiro K: SCA6 mutation analysis in a large cohort of the Japanese patients with late-onset pure cerebellar ataxia. J Neurol Sci 156:89–95 (1998).
78.
Yabe I, Sasaki H, Yamashita, Takei A, Suzuki Y, Kida H, Takiyama Y, Nishizawa M, Hokezu Y, Nagamatsu K, Oda T, Ohnishi A, Inoue I, Hata A, Tashiro K: Predisposing chromosome for spinocerebellar ataxia type 6 (SCA6) in Japanese. J med Genet 38:328–333 (2001).
79.
Yabe I, Sasaki H, Kikuchi S, Nonaka M, Moriwaka F, Tashiro K: Late onset ataxia phenotype in dentatorubro-pallidoluysian atrophy (DRPLA). J Neurol 249:432–436 (2002).
80.
Yabe I, Sasaki H, Takeichi N, Takei A, Hamada T, Fukushima K, Tashiro K: Positional vertigo and macroscopic downbeat positioning nystagmus in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:440–443 (2003).
81.
Yakura H, Wakisaka A, Fujimoto S, Itakura K: Hereditary ataxia and HL-A. New Eng J Med 291:154–155 (1974).
82.
Yamashita I, Sasaki H, Yabe I, Fukazawa T, Nogoshi S, Komeichi K, Takada A, Shiraishi K, Takiyama Y, Nishizawa M, Kaneko J, Tanaka H, Tsuji S, Tashiro K: A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4→qter. Ann Neurol 48:156–163 (2000).
83.
Yanagisawa H, Fujii K, Nagafuchi S, Nakahori Y, Nakagome Y, Akane A, Nakamura M, Sano A, Komure O, Kondo I, Jin DK, Sorensen SA, Potter NT, Young SR, Nakamura K, Nukina N, Nagao Y, Tadokoro K, Okuyama T, Miyashita T, Inoue T, Kanazawa I, Yamada M: A unique origin and multistep process for the generation of expanded DRPLA triplet repeats. Hum molec Genet 5:373–379 (1996).
84.
Yokota T, Shiojiri T, Gotoda T, Arai H: Retinitis pigmentosa and ataxia caused by a mutation in the gene for the α-tocopherol-transfer protein. New Eng J Med 335:1770–1771 (1996).
85.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nature Genet 15:62–69 (1997).
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.