Introduction: A significant proportion of stroke survivors, ranging from 50% to 88%, experience upper limb motor impairments. Traditional upper limb assessments in clinical settings rely on subjective observations, leading to inconsistencies. Motion capture (MoCap) systems offer objective, precise assessments of kinematics. This review aimed to systematically evaluate emergent MoCap technologies for upper limb assessment in stroke patients. Methods: This protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols extension for Scoping Reviews (PRISMA-ScR) and the Cochrane Handbook for Systematic Reviews of Interventions version 6.4. The review is registered with the Open Science Framework. Searches will be conducted in PubMed, Medline, CINAHL, CENTRAL, and IEEE Xplore. We will include peer-reviewed studies from 2014 to 2024, in English, focusing on adults (≥18 years) post-stroke using MoCap technologies for upper limb assessment. Two or more reviewers will independently screen, select, and extract data. A narrative synthesis will describe the evidence’s quality and content. Conclusion: This review will enhance our understanding of MoCap technologies for upper limb assessment post-stroke, identifying strengths, limitations, and providing evidence-based recommendations for clinical practice and future research. It aims to bridge the gap by capturing and analysing the latest advancements and their clinical applications.

1.
Lawrence
ES
,
Coshall
C
,
Dundas
R
,
Stewart
J
,
Rudd
AG
,
Howard
R
, et al
.
Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population
.
Stroke
.
2001
;
32
(
6
):
1279
84
.
2.
Jones
L
,
van Wijck
F
,
Grealy
M
,
Rowe
P
.
A changing stroke rehabilitation environment: implications for upper limb interventions
. In:
Presented at: international ICST conference on pervasive computing technologies for healthcare
;
2011
.
3.
Pollock
A
,
Farmer
SE
,
Brady
MC
,
Langhorne
P
,
Mead
GE
,
Mehrholz
J
, et al
.
Interventions for improving upper limb function after stroke
.
Cochrane Database Syst Rev
.
2014
;
2014
(
11
):
CD010820
.
4.
Royal College of Physicians
.
National clinical guideline for stroke
. 4th ed.
London
:
Royal College of Physicians
;
2012
.
5.
Hebert
D
,
Lindsay
MP
,
McIntyre
A
,
Kirton
A
,
Rumney
PG
,
Bagg
S
, et al
.
Canadian stroke best practice recommendations: stroke rehabilitation practice guidelines, update 2015
.
Int J Stroke
.
2016
;
11
(
4
):
459
84
.
6.
Kwakkel
G
,
Lannin
NA
,
Borschmann
K
,
English
C
,
Ali
M
,
Churilov
L
, et al
.
Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable
.
Int J Stroke
.
2017
;
12
(
5
):
451
61
.
7.
Alt Murphy
M
,
Willén
C
,
Sunnerhagen
KS
.
Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke
.
Neurorehabil Neural Repair
.
2013
;
27
(
9
):
844
53
.
8.
Chen
HM
,
Chen
CC
,
Hsueh
IP
,
Huang
SL
,
Hsieh
CL
.
Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke
.
Neurorehabil Neural Repair
.
2009
;
23
(
5
):
435
40
.
9.
Lin
KC
,
Chuang
LL
,
Wu
CY
,
Hsieh
YW
,
Chang
WY
.
Responsiveness and validity of three dexterous function measures in stroke rehabilitation
.
J Rehabil Res Dev
.
2010
;
47
(
6
):
563
71
.
10.
Patterson
TS
,
Bishop
MD
,
McGuirk
TE
,
Sethi
A
,
Richards
LG
.
Reliability of upper extremity kinematics while performing different tasks in individuals with stroke
.
J Mot Behav
.
2011
;
43
(
2
):
121
30
.
11.
Schwarz
A
,
Kanzler
CM
,
Lambercy
O
,
Luft
AR
,
Veerbeek
JM
.
Systematic review on kinematic assessments of upper limb movements after stroke
.
Stroke
.
2019
;
50
(
3
):
718
27
.
12.
Alt Murphy
M
,
Willén
C
,
Sunnerhagen
KS
.
Kinematic variables quantifying upper extremity performance after stroke during reaching and drinking from a glass
.
Neurorehabil Neural Repair
.
2011
;
25
(
1
):
71
80
.
13.
Gu
C
,
Lin
W
,
He
X
,
Zhang
L
,
Zhang
M
.
IMU-based motion capture system for rehabilitation applications: a systematic review
.
Biomim Intell Robot
.
2023
;
3
(
2
):
100097
.
14.
Chow
JC
,
Ang
K
,
Lichti
D
,
Teskey
W
.
Performance analysis of a low-cost triangulation-based 3D camera: Microsoft Kinect system
.
Int Arch Photogramm Remote Sens Spat Inf Sci
.
2012
;
XXXIX-B5
:
175
80
.
15.
Matthew
R
,
Seko
S
,
Bajcsy
R
,
Lotz
J
.
Kinematic and kinetic validation of an improved depth camera motion assessment system using rigid bodies
.
IEEE J Biomed Health Inform
.
2019
;
23
(
4
):
1784
93
.
16.
Scott
B
,
Seyres
M
,
Philp
F
,
Chadwick
EK
,
Blana
D
.
Healthcare applications of single camera markerless motion capture: a scoping review
.
PeerJ
.
2022
;
10
:
e13517
.
17.
Yahya
M
,
Shah
JA
,
Warsi
A
,
Kadir
KA
,
Khan
S
,
Izani
M
.
Real time elbow angle estimation using single RGB camera
.
arXiv preprint
;
2018
. arXiv:1808.07017. Available from: https://arxiv.org/abs/1808.07017
18.
Das
K
,
de Paula Oliveira
T
,
Newell
J
.
Comparison of markerless and marker-based motion capture systems using 95% functional limits of agreement in a linear mixed-effects modelling framework
.
Sci Rep
.
2023
;
13
(
1
):
22880
.
19.
Vito
L
,
Postolache
O
,
Rapuano
S
.
Measurements and sensors for motion tracking in motor rehabilitation
.
IEEE Instrum Meas Mag
.
2014
;
17
(
3
):
30
8
.
20.
Yahya
M
,
Shah
JA
,
Kadir
KA
,
Yusof
ZM
,
Khan
S
,
Warsi
A
.
Motion capture sensing techniques used in human upper limb motion: a review
.
Sens Rev
.
2019
;
39
(
4
):
504
11
.
21.
López-Nava
IH
,
Muñoz-Meléndez
A
.
Wearable inertial sensors for human motion analysis: a review
.
IEEE Sensors J
.
2016
;
16
(
22
):
7821
34
.
22.
Li
T
,
Yu
H
.
Visual-inertial fusion-based human pose estimation: a review
.
IEEE Trans Instrum Meas
.
2023
;
72
:
1
16
.
23.
Tang
Q
,
Liang
J
,
Zhu
F
.
A comparative review on multi-modal sensors fusion based on deep learning
.
Signal Process
.
2023
;
213
:
109165
.
24.
Kim
GJ
,
Parnandi
A
,
Eva
S
,
Schambra
H
.
The use of wearable sensors to assess and treat the upper extremity after stroke: a scoping review
.
Disabil Rehabil
.
2022
;
44
(
20
):
6119
38
.
25.
Heye
A
,
Kersting
C
,
Kneer
M
,
Barzel
A
.
Suitability of accelerometry as an objective measure for upper extremity use in stroke patients
.
BMC Neurol
.
2022
;
22
(
1
). 10.1186/s12883-022-02743-w.
26.
Tricco
AC
,
Lillie
E
,
Zarin
W
,
O’Brien
KK
,
Colquhoun
H
,
Levac
D
, et al
.
PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation
.
Ann Intern Med
.
2018
;
169
(
7
):
467
73
.
27.
Lefebvre
C
,
Glanville
J
,
Briscoe
S
,
Featherstone
R
,
Littlewood
A
,
Metzendorf
MI
, et al
.
Chapter 4: searching for and selecting studies
. In:
Higgins
JP
,
Thomas
J
,
Chandler
J
,
Cumpston
M
,
Li
T
,
Page
MJ
, et al
, editors.
Cochrane handbook for systematic reviews of interventions, version 6.4
.
Cochrane
;
2023
. Available from: www.training.cochrane.org/handbook
28.
Peters
MD
,
Godfrey
CM
,
Khalil
H
,
McInerney
P
,
Parker
D
,
Soares
CB
.
Guidance for conducting systematic scoping reviews
.
Int J Evid Based Healthc
.
2015
;
13
(
3
):
141
6
.
You do not currently have access to this content.