Introduction: There has been limited research on predicting the functional prognosis of patients with nonsurgical intracerebral hemorrhage (ICH) from the acute stage. The aim of this study was to develop a risk prediction model for the natural course in patients with nonsurgical ICH and to evaluate its performance using a multicenter hospital-based prospective study of stroke patients in Japan. Methods: We consecutively registered a total of 1,017 patients with acute ICH (mean age, 68 years) who underwent conservative treatment and followed them up for 3 months. The study outcome was a poor functional outcome (modified Rankin Scale score, 4–6) at 3 months after ICH onset. To develop the risk prediction model for natural course in patients with nonsurgical ICH, we included the following clinical common factors assessed on admission in daily clinical practice for ICH: age, sex, medical history (hypertension, diabetes mellitus, dyslipidemia, pre-stroke dementia, previous stroke, coronary artery disease, smoking status, alcohol drinking status, oral anticoagulation, and antiplatelet medication), admission status (time from onset to admission, systolic blood pressure, diastolic blood pressure, pulse pressure, plasma glucose levels, severity of the stroke), and neuroradiologic data (ICH location, intraventricular hemorrhage, and hematoma volume). The risk prediction model for poor functional outcome was developed using logistic regression analysis. In addition, the risk prediction model was translated into a point-based simple risk score (FSR ICH score) using the approach in the Framingham Heart Study. Results: At 3 months after the ICH onset, 323 (31.8%) patients developed a poor functional outcome. Age, diabetes mellitus, pre-stroke dementia, NIHSS score on admission, intraventricular hemorrhage, and hematoma volume were included in the risk prediction model. This model demonstrated excellent discrimination (C statistic = 0.884 [95% confidence interval, 0.863–0.905]; optimism-corrected C statistic based on 200 bootstrap samples = 0.877) and calibration (Hosmer-Lemeshow goodness-of-fit test: p = 0.72). The FSR ICH score, a point-based simple risk score, also showed excellent discrimination, with a C statistic of 0.882 (95% CI: 0.861–0.903). Conclusions: We developed a new risk prediction model for 3-month poor functional outcome in patients with nonsurgical ICH using a multicenter hospital-based prospective study in Japan. The current risk prediction model has the potential to be a useful tool for estimating the natural course in patients with nonsurgical ICH, aiding in making treatment decisions, including surgical options, early formulation of rehabilitation plans, and efficient utilization of medical resources.

1.
GBD 2016 Stroke Collaborators
.
Global, regional, and national burden of stroke, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016
.
Lancet Neurol
.
2019
;
18
(
5
):
439
58
.
2.
Hemphill
JC
3rd
,
Johnston
SC
,
Bonovich
DC
,
Besmertis
L
,
Manley
GT
.
The ICH score: a simple, reliable grading scale for intracerebral hemorrhage
.
Stroke
.
2001
;
32
(
4
):
891
7
.
3.
Witsch
J
,
Siegerink
B
,
Nolte
CH
,
Sprugel
M
,
Steiner
T
,
Endres
M
, et al
.
Prognostication after intracerebral hemorrhage: a review
.
Neurol Res Pract
.
2021
;
3
(
1
):
22
.
4.
Ji
R
,
Shen
H
,
Pan
Y
,
Wang
P
,
Liu
G
,
Wang
Y
, et al
.
A novel risk score to predict 1-year functional outcome after intracerebral hemorrhage and comparison with existing scores
.
Crit Care
.
2013
;
17
(
6
):
R275
.
5.
Gupta
VP
,
Garton
ALA
,
Sisti
JA
,
Christophe
BR
,
Lord
AS
,
Lewis
AK
, et al
.
Prognosticating functional outcome after intracerebral hemorrhage: the ICHOP score
.
World Neurosurg
.
2017
;
101
:
577
83
.
6.
Sembill
JA
,
Gerner
ST
,
Volbers
B
,
Bobinger
T
,
Lucking
H
,
Kloska
SP
, et al
.
Severity assessment in maximally treated ICH patients: the max-ICH score
.
Neurology
.
2017
;
89
(
5
):
423
31
.
7.
Langhorne
P
,
Bernhardt
J
,
Kwakkel
G
.
Stroke rehabilitation
.
Lancet
.
2011
;
377
(
9778
):
1693
702
.
8.
Zhao
XR
,
Sun
GH
,
Zhang
J
,
Strong
R
,
Song
WT
,
Gonzales
N
, et al
.
Hematoma resolution as a target for intracerebral hemorrhage treatment:: role for peroxisome proliferator-activated receptor γ in microglia/macrophages
.
Ann Neurol
.
2007
;
61
(
4
):
352
62
.
9.
Kamouchi
M
,
Matsuki
T
,
Hata
J
,
Kuwashiro
T
,
Ago
T
,
Sambongi
Y
, et al
.
Prestroke glycemic control is associated with the functional outcome in acute ischemic stroke: the Fukuoka Stroke Registry
.
Stroke
.
2011
;
42
(
10
):
2788
94
.
10.
Kothari
RU
,
Brott
T
,
Broderick
JP
,
Barsan
WG
,
Sauerbeck
LR
,
Zuccarello
M
, et al
.
The ABCs of measuring intracerebral hemorrhage volumes
.
Stroke
.
1996
;
27
(
8
):
1304
5
.
11.
Wei
CC
,
Wang
J
,
Foster
LD
,
Yeatts
SD
,
Moy
C
,
Mocco
J
, et al
.
Effect of deferoxamine on outcome according to baseline hematoma volume: a post hoc analysis of the i-DEF trial
.
Stroke
.
2022
;
53
(
4
):
1149
56
.
12.
Harrell
FE
Jr
,
Lee
KL
,
Mark
DB
.
Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
.
Stat Med
.
1996
;
15
(
4
):
361
87
.
13.
D’Agostino
RB
,
Nam
B-H
.
Evaluation of the performance of survival analysis models: discrimination and calibration measures
. In:
Handbook of statistics
.
Elsevier
;
2003
; p.
1
25
.
14.
Sullivan
LM
,
Massaro
JM
,
D’Agostino
RB
.
Presentation of multivariate data for clinical use: the Framingham Study risk score functions
.
Stat Med
.
2004
;
23
(
10
):
1631
60
.
15.
DeLong
ER
,
DeLong
DM
,
Clarke-Pearson
DL
.
Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
.
Biometrics
.
1988
;
44
(
3
):
837
45
.
16.
Aronowski
J
,
Zhao
X
.
Molecular pathophysiology of cerebral hemorrhage: secondary brain injury
.
Stroke
.
2011
;
42
(
6
):
1781
6
.
17.
Rost
NS
,
Smith
EE
,
Chang
Y
,
Snider
RW
,
Chanderraj
R
,
Schwab
K
, et al
.
Prediction of functional outcome in patients with primary intracerebral hemorrhage: the FUNC score
.
Stroke
.
2008
;
39
(
8
):
2304
9
.
18.
Reilly
JC
,
Houghton
C
.
The experiences and perceptions of care in acute settings for patients living with dementia: a qualitative evidence synthesis
.
Int J Nurs Stud
.
2019
;
96
:
82
90
.
19.
Koh
GC
,
Chen
CH
,
Petrella
R
,
Thind
A
.
Rehabilitation impact indices and their independent predictors: a systematic review
.
BMJ Open
.
2013
;
3
(
9
):
e003483
.
20.
Boulanger
M
,
Poon
MTC
,
Wild
SH
,
Al-Shahi Salman
R
.
Association between diabetes mellitus and the occurrence and outcome of intracerebral hemorrhage
.
Neurology
.
2016
;
87
(
9
):
870
8
.
21.
Song
EC
,
Chu
K
,
Jeong
SW
,
Jung
KH
,
Kim
SH
,
Kim
M
, et al
.
Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage
.
Stroke
.
2003
;
34
(
9
):
2215
20
.
22.
Watson
N
,
Bonsack
F
,
Sukumari-Ramesh
S
.
Intracerebral hemorrhage: the effects of aging on brain injury
.
Front Aging Neurosci
.
2022
;
14
:
859067
.
23.
Bartels
T
,
De Schepper
S
,
Hong
SY
.
Microglia modulate neurodegeneration in Alzheimer’s and Parkinson’s diseases
.
Science
.
2020
;
370
(
6512
):
66
9
.
24.
Bahadar
GA
,
Shah
ZA
.
Intracerebral hemorrhage and diabetes mellitus: blood-brain barrier disruption, pathophysiology, and cognitive impairments
.
Cns Neurol Disord-dr
.
2021
;
20
(
4
):
312
26
.
25.
Schmidt
FA
,
Liotta
EM
,
Prabhakaran
S
,
Naidech
AM
,
Maas
MB
.
Assessment and comparison of the max-ICH score and ICH score by external validation
.
Neurology
.
2018
;
91
(
10
):
e939
46
.
26.
Sembill
JA
,
Castello
JP
,
Sprugel
MI
,
Gerner
ST
,
Hoelter
P
,
Lucking
H
, et al
.
Multicenter validation of the max-ICH score in intracerebral hemorrhage
.
Ann Neurol
.
2021
;
89
(
3
):
474
84
.
27.
Seiffge
DJ
,
Goeldlin
MB
,
Tatlisumak
T
,
Lyrer
P
,
Fischer
U
,
Engelter
ST
, et al
.
Meta-analysis of haematoma volume, haematoma expansion and mortality in intracerebral haemorrhage associated with oral anticoagulant use
.
J Neurol
.
2019
;
266
(
12
):
3126
35
.
You do not currently have access to this content.