Introduction: Ischemic cerebral stroke initiates a complex cascade of pathophysiological events, involving various forms of molecular shifts and edema. Early intervention is pivotal in minimizing tissue loss and improving clinical outcomes. This study explores the temporal and spatial evolution of tissue sodium concentration (TSC) in acute ischemic lesions after acute therapy using 23Na-MRI in addition to conventional 1H-MRI. Methods: Prospectively, from examined 58 patients with acute ischemic stroke with a combined 1H/23Na-MRI within 72 h of symptom onset after receiving acute therapy, 31 patients were included in the evaluation of this study. After co-registration of the 23Na-MRI images to the morphological 1H-MRI images, manual segmentation of the ischemic lesions was performed, and the ADC and TSC measurements were quantified and correlated with the time of onset and lesion volume. Results: The mean TSC in ischemic lesions correlated positively with lesion volume (r = 0.52, p = 0.002) and showed a significant association with the time of stroke onset (r = 0.8, p < 0.001). Patients who were treated only with intravenous rtPA showed homogenous sodium signal intensity in the ischemic lesions, whereas the patients who received mechanical recanalization exhibited distinctive sodium signal intensity patterns with focal significant TSC differences. Conclusion: The integration of 1H- and 23Na-MRI provides a nuanced understanding of temporal and spatial changes due to different types of edema in ischemic stroke lesions following acute treatment. Further exploration of these findings may enhance our understanding of stroke pathophysiology and guide personalized therapeutic interventions.

1.
Deb
P
,
Sharma
S
,
Hassan
KM
.
Pathophysiologic mechanisms of acute ischemic stroke: an overview with emphasis on therapeutic significance beyond thrombolysis
.
Pathophysiology
.
2010
;
17
(
3
):
197
218
.
2.
von Kummer
R
,
Dzialowski
I
.
Imaging of cerebral ischemic edema and neuronal death
.
Neuroradiology
.
2017
;
59
(
6
):
545
53
.
3.
Broocks
G
,
Hanning
U
,
Flottmann
F
,
Schonfeld
M
,
Faizy
TD
,
Sporns
P
, et al
.
Clinical benefit of thrombectomy in stroke patients with low ASPECTS is mediated by oedema reduction
.
Brain
.
2019
;
142
(
5
):
1399
407
.
4.
Thulborn
KR
,
Davis
D
,
Snyder
J
,
Yonas
H
,
Kassam
A
.
Sodium MR imaging of acute and subacute stroke for assessment of tissue viability
.
Neuroimaging Clin N Am
.
2005
;
15
(
3
):
639
53
.
5.
Broocks
G
,
Kniep
H
,
Kemmling
A
,
Flottmann
F
,
Nawabi
J
,
Elsayed
S
, et al
.
Effect of intravenous alteplase on ischaemic lesion water homeostasis
.
Eur J Neurol
.
2020
;
27
(
2
):
376
83
.
6.
Neumaier-Probst
E
,
Konstandin
S
,
Ssozi
J
,
Groden
C
,
Hennerici
M
,
Schad
LR
, et al
.
A double-tuned (1) H/(23) Na resonator allows (1) H-guided (23) Na-MRI in ischemic stroke patients in one session
.
Int J Stroke
.
2015
;
10
(
Suppl A100
):
56
61
.
7.
Thulborn
KR
.
Quantitative sodium MR imaging: a review of its evolving role in medicine
.
Neuroimage
.
2018
;
168
:
250
68
.
8.
Heiler
PM
,
Langhauser
FL
,
Wetterling
F
,
Ansar
S
,
Grudzenski
S
,
Konstandin
S
, et al
.
Chemical shift sodium imaging in a mouse model of thromboembolic stroke at 9.4 T
.
J Magn Reson Imaging
.
2011
;
34
(
4
):
935
40
.
9.
Thulborn
KR
,
Gindin
TS
,
Davis
D
,
Erb
P
.
Comprehensive MR imaging protocol for stroke management: tissue sodium concentration as a measure of tissue viability in nonhuman primate studies and in clinical studies
.
Radiology
.
1999
;
213
(
1
):
156
66
.
10.
Lin
S-P
,
Song
S-K
,
Miller
JP
,
Ackerman
JJ
,
Neil
JJ
.
Direct, longitudinal comparison of 1H and 23Na MRI after transient focal cerebral ischemia
.
Stroke
.
2001
;
32
(
4
):
925
32
.
11.
Madelin
G
,
Regatte
RR
.
Biomedical applications of sodium MRI in vivo
.
J Magn Reson Imaging
.
2013
;
38
(
3
):
511
29
.
12.
Nagel
AM
,
Laun
FB
,
Weber
MA
,
Matthies
C
,
Semmler
W
,
Schad
LR
.
Sodium MRI using a density-adapted 3D radial acquisition technique
.
Magn Reson Med
.
2009
;
62
(
6
):
1565
73
.
13.
Madelin
G
,
Lee
JS
,
Regatte
RR
,
Jerschow
A
.
Sodium MRI: methods and applications
.
Prog Nucl Magn Reson Spectrosc
.
2014
;
79
:
14
47
.
14.
Stokum
JA
,
Gerzanich
V
,
Simard
JM
.
Molecular pathophysiology of cerebral edema
.
J Cereb Blood Flow Metab
.
2016
;
36
(
3
):
513
38
.
15.
Hsia
AW
,
Luby
M
,
Cullison
K
,
Burton
S
,
Armonda
R
,
Liu
AH
, et al
.
Rapid apparent diffusion coefficient evolution after early revascularization
.
Stroke
.
2019
;
50
(
8
):
2086
92
.
16.
Hasegawa
Y
,
Fisher
M
,
Latour
LL
,
Dardzinski
BJ
,
Sotak
CH
.
MRI diffusion mapping of reversible and irreversible ischemic injury in focal brain ischemia
.
Neurology
.
1994
;
44
(
8
):
1484
90
.
17.
Schlaug
G
,
Siewert
B
,
Benfield
A
,
Edelman
RR
,
Warach
S
.
Time course of the Apparent Diffusion Coefficient (ADC) abnormality in human stroke
.
Neurology
.
1997
;
49
(
1
):
113
9
.
18.
Lee
K-C
,
Yu
J-F
,
Lee
Y-S
,
Huang
G-J
,
Chan
H-L
,
Lin
I-T
, et al
.
In vivo sodium MRI for mouse model of ischemic stroke at 7 T: preliminary results
.
J Med Biol Eng
.
2015
;
35
(
5
):
643
50
.
19.
Jones
SC
,
Kharlamov
A
,
Yanovski
B
,
Kim
DK
,
Easley
KA
,
Yushmanov
VE
, et al
.
Stroke onset time using sodium MRI in rat focal cerebral ischemia
.
Stroke
.
2006
;
37
(
3
):
883
8
.
20.
Ridley
B
,
Nagel
AM
,
Bydder
M
,
Maarouf
A
,
Stellmann
J-P
,
Gherib
S
, et al
.
Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field 23Na MRI study
.
Sci Rep
.
2018
;
8
(
1
):
4357
.
21.
Gast
LV
,
Platt
T
,
Nagel
AM
,
Gerhalter
T
.
Recent technical developments and clinical research applications of sodium ((23)Na) MRI
.
Prog Nucl Magn Reson Spectrosc
.
2023
;
138-139
:
1
51
.
22.
Niesporek
SC
,
Hoffmann
SH
,
Berger
MC
,
Benkhedah
N
,
Kujawa
A
,
Bachert
P
, et al
.
Partial volume correction for in vivo 23Na-MRI data of the human brain
.
Neuroimage
.
2015
;
112
:
353
63
.
23.
Adlung
A
,
Licht
C
,
Reichert
S
,
Özdemir
S
,
Mohamed
SA
,
Samartzi
M
, et al
.
Quantification of tissue sodium concentration in the ischemic stroke: a comparison between external and internal references for 23Na MRI
.
J Neurosci Methods
.
2022
;
382
:
109721
.
24.
Adlung
A
,
Samartzi
M
,
Schad
LR
,
Neumaier-Probst
E
,
Fatar
M
,
A Mohamed
S
.
Tissue sodium concentration within white matter correlates with the extent of small vessel disease
.
Cerebrovasc Dis
.
2021
;
50
(
3
):
347
55
.
25.
Boada
FE
,
Qian
Y
,
Nemoto
E
,
Jovin
T
,
Jungreis
C
,
Jones
SC
, et al
.
Sodium MRI and the assessment of irreversible tissue damage during hyper-acute stroke
.
Transl Stroke Res
.
2012
;
3
(
2
):
236
45
.
26.
Hofmeijer
J
,
Algra
A
,
Kappelle
LJ
,
van der Worp
HB
.
Predictors of life-threatening brain edema in middle cerebral artery infarction
.
Cerebrovasc Dis
.
2008
;
25
(
1–2
):
176
84
.
27.
Harston
GWJ
,
Carone
D
,
Sheerin
F
,
Jenkinson
M
,
Kennedy
J
.
Quantifying infarct growth and secondary injury volumes: comparing multimodal image registration measures
.
Stroke
.
2018
;
49
(
7
):
1647
55
.
28.
Broocks
G
,
Hanning
U
,
Faizy
TD
,
Scheibel
A
,
Nawabi
J
,
Schon
G
, et al
.
Ischemic lesion growth in acute stroke: water uptake quantification distinguishes between edema and tissue infarct
.
J Cereb Blood Flow Metab
.
2020
;
40
(
4
):
823
32
.
29.
Broocks
G
,
Flottmann
F
,
Hanning
U
,
Schon
G
,
Sporns
P
,
Minnerup
J
, et al
.
Impact of endovascular recanalization on quantitative lesion water uptake in ischemic anterior circulation strokes
.
J Cereb Blood Flow Metab
.
2020
;
40
(
2
):
437
45
.
30.
Madelin
G
,
Kline
R
,
Walvick
R
,
Regatte
RR
.
A method for estimating intracellular sodium concentration and extracellular volume fraction in brain in vivo using sodium magnetic resonance imaging
.
Sci Rep
.
2014
;
4
:
4763
.
You do not currently have access to this content.