Introduction: This study aimed to elucidate the mechanisms underlying endothelial injury in the context of intracranial aneurysm formation and development, which are associated with vascular endothelial injury caused by hemodynamic abnormalities. Specifically, we focus on the involvement of PKCα, an intracellular signaling transmitter closely linked to vascular diseases, and its role in activating MAPK. Additionally, we investigate the protective effects of PPARγ, a vasculoprotective factor known to attenuate vascular injury by mitigating the inflammatory response in the vessel wall. Methods: The study employs a modified T-chamber to replicate fluid flow conditions at the artery bifurcation, allowing us to assess wall shear stress effects on human umbilical vein endothelial cells in vitro. Through experimental manipulations involving PKCα knockdown and Ca2+ and MAPK inhibitors, we evaluated the phosphorylation status of PKCα, NF-κB, ERK5, ERK1/2, JNK1/2/3, and P38, as well as the expression levels of PPARγ, NF-κB, and MMP2 via Western blot analysis. The cellular localization of phosphorylated NF-κB was determined using immunofluorescence. Results: Our results showed that impinging flow resulted in the activation of PKCα, followed by the phosphorylation of ERK5, ERK1/2, and JNK1/2/3, leading to a decrease in PPARγ expression, an increase in the expression of NF-κB and MMP2, and the induction of apoptotic injury. Inhibition of PKCα activation or knockdown of PKCα using shRNA leads to a suppression of ERK5, ERK1/2, JNK1/2/3, and P38 phosphorylation, an elevation in PPARγ expression, and a reduction in NF-κB and MMP2 expression, alleviated apoptotic injury. Furthermore, we observe that the regulation of PPARγ, NF-κB, and MMP2 expression is influenced by ERK5 and ERK1/2 phosphorylation, and activation of PPARγ effectively counteracts the elevated expression of NF-κB and MMP2. Conclusion: Our findings suggest that the PKCα/ERK/PPARγ pathway plays a crucial role in mediating endothelial injury under conditions of impinging flow, with potential implications for vascular diseases and intracranial aneurysm development.

1.
Chalouhi
N
,
Hoh
BL
,
Hasan
D
.
Review of cerebral aneurysm formation, growth, and rupture
.
Stroke
.
2013
;
44
(
12
):
3613
22
.
2.
Texakalidis
P
,
Sweid
A
,
Mouchtouris
N
,
Peterson
EC
,
Sioka
C
,
Rangel-Castilla
L
, et al
.
Aneurysm Formation, growth, and rupture: the biology and physics of cerebral aneurysms
.
World Neurosurg
.
2019
;
130
:
277
84
.
3.
Diagbouga
MR
,
Morel
S
,
Bijlenga
P
,
Kwak
BR
.
Role of hemodynamics in initiation/growth of intracranial aneurysms
.
Eur J Clin Invest
.
2018
;
48
(
9
):
e12992
.
4.
Longo
M
,
Granata
F
,
Racchiusa
S
,
Mormina
E
,
Grasso
G
,
Longo
GM
, et al
.
Role of hemodynamic forces in unruptured intracranial aneurysms: an overview of a complex scenario
.
World Neurosurg
.
2017
;
105
:
632
42
.
5.
Soldozy
S
,
Norat
P
,
Elsarrag
M
,
Chatrath
A
,
Costello
JS
,
Sokolowski
JD
, et al
.
The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture
.
Neurosurg Focus
.
2019
;
47
(
1
):
E11
.
6.
Rajabzadeh-Oghaz
H
,
Siddiqui
AH
,
Asadollahi
A
,
Kolega
J
,
Tutino
VM
.
The association between hemodynamics and wall characteristics in human intracranial aneurysms: a review
.
Neurosurg Rev
.
2022
;
45
(
1
):
49
61
.
7.
Staarmann
B
,
Smith
M
,
Prestigiacomo
CJ
.
Shear stress and aneurysms: a review
.
Neurosurg Focus
.
2019
;
47
(
1
):
E2
.
8.
Griner
EM
,
Kazanietz
MG
.
Kazanietz MG: protein kinase C and other diacylglycerol effectors in cancer
.
Nat Rev Cancer
.
2007
;
7
(
4
):
281
94
.
9.
Isakov
N
.
Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression
.
Semin Cancer Biol
.
2018
;
48
:
36
52
.
10.
Newton
AC
.
Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm
.
Biochem J
.
2003
;
370
(
Pt 2
):
361
71
.
11.
Tinsley
JH
,
Teasdale
NR
,
Yuan
SY
.
Involvement of PKCdelta and PKD in pulmonary microvascular endothelial cell hyperpermeability
.
Am J Physiol Cell Physiol
.
2004
;
286
(
1
):
C105
11
.
12.
Steinberg
SF
.
Structural basis of protein kinase C isoform function
.
Physiol Rev
.
2008
;
88
(
4
):
1341
78
.
13.
Zhao
YY
,
Huang
SX
,
Hao
Z
,
Zhu
HX
,
Xing
ZL
,
Li
MH
.
Fluid shear stress induces endothelial cell injury via protein kinase C alpha-mediated repression of p120-catenin and vascular endothelial cadherin in vitro
.
World Neurosurg
.
2020
;
136
:
e469
75
.
14.
Park
MJ
,
Park
IC
,
Lee
HC
,
Woo
SH
,
Lee
JY
,
Hong
YJ
, et al
.
Protein kinase C-α activation by phorbol ester induces secretion of gelatinase B/MMP-9 through ERK 1/2 pathway in capillary endothelial cells
.
Int J Oncol
.
2003
;
22
(
1
):
137
43
.
15.
Shin
Y
,
Yoon
SH
,
Choe
EY
,
Cho
SH
,
Woo
CH
,
Rho
JY
, et al
.
PMA-induced up-regulation of MMP-9 is regulated by a PKCalpha-NF-kappaB cascade in human lung epithelial cells
.
Exp Mol Med
.
2007
;
39
(
1
):
97
105
.
16.
Wang
HH
,
Hsieh
HL
,
Wu
CY
,
Yang
CM
.
Oxidized low-density lipoprotein-induced matrix metalloproteinase-9 expression via PKC-delta/p42/p44 MAPK/Elk-1 cascade in brain astrocytes
.
Neurotox Res
.
2010
;
17
(
1
):
50
65
.
17.
Hamblin
M
,
Chang
L
,
Fan
Y
,
Zhang
J
,
Chen
YE
.
PPARs and the cardiovascular system
.
Antioxid Redox Signal
.
2009
;
11
(
6
):
1415
52
.
18.
Oyekan
A
.
PPARs and their effects on the cardiovascular system
.
Clin Exp Hypertens
.
2011
;
33
(
5
):
287
93
.
19.
Wada
K
,
Makino
H
,
Shimada
K
,
Shikata
F
,
Kuwabara
A
,
Hashimoto
T
.
Translational research using a mouse model of intracranial aneurysm
.
Transl Stroke Res
.
2014
;
5
(
2
):
248
51
.
20.
Chyatte
D
,
Lewis
I
.
Gelatinase activity and the occurrence of cerebral aneurysms
.
Stroke
.
1997
;
28
(
4
):
799
804
.
21.
Tesfamariam
B
.
Endothelial repair and regeneration following intimal injury
.
J Cardiovasc Transl Res
.
2016
;
9
(
2
):
91
101
.
22.
Zhu
H
,
Hao
Z
,
Xing
Z
,
Tan
J
,
Zhao
Y
,
Li
M
.
Impinging flow induces expression of monocyte chemoattractant protein-1 in endothelial cells through activation of the c-jun N-terminal kinase/c-jun/p38/c-fos pathway
.
World Neurosurg
.
2022
;
164
:
e681
93
.
23.
Zhao
JL
,
Xiao
ZP
,
Yu
NZ
,
Jiang
JW
,
Li
MH
.
Knockdown of P120 catenin aggravates endothelial injury under an impinging flow by inducing breakdown of adherens junctions
.
Mol Med Rep
.
2019
;
19
(
1
):
541
8
.
24.
Hao
Z
,
Li
Y
,
Yu
N
,
Zhao
Y
,
Hu
S
,
Liu
Z
, et al
.
Analysis of differentially expressed circular RNAs in endothelial cells under impinging flow
.
Mol Cel Probes
.
2020
;
51
:
101539
.
25.
Mackay
HJ
,
Twelves
CJ
.
Targeting the protein kinase C family: are we there yet
.
Nat Rev Cancer
.
2007
;
7
:
554
62
.
26.
Zhang
X
,
Karuna
T
,
Yao
ZQ
,
Duan
CZ
,
Wang
XM
,
Jiang
ST
, et al
.
High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up
.
J Neurosurg
.
2018
;
131
(
3
):
868
75
.
27.
Murayama
Y
,
Fujimura
S
,
Suzuki
T
,
Takao
H
.
Computational fluid dynamics as a risk assessment tool for aneurysm rupture
.
Neurosurg Focus
.
2019
;
47
(
1
):
E12
.
28.
Dolan
JM
,
Meng
H
,
Sim
FJ
,
Kolega
J
.
Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress
.
Am J Physiol Cel Physiol
.
2013
;
305
(
8
):
C854
66
.
29.
Dolan
JM
,
Meng
H
,
Singh
S
,
Paluch
R
,
Kolega
J
.
High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment
.
Ann Biomed Eng
.
2011
;
39
(
6
):
1620
31
.
30.
Kim
BJ
,
Hong
EP
,
Youn
DH
,
Jeon
JP
;
First Korean Stroke Genetics Association Research
.
Genome-wide association study of the relationship between matrix metalloproteinases and intracranial aneurysms
.
J Clin Neurol
.
2022
;
18
(
2
):
163
70
.
31.
Ribeiro Vitorino
T
,
Ferraz do Prado
A
,
Bruno de Assis Cau
S
,
Rizzi
E
.
MMP-2 and its implications on cardiac function and structure: interplay with inflammation in hypertension
.
Biochem Pharmacol
.
2023
;
215
:
115684
.
32.
Flores-Pliego
A
,
Espejel-Nunez
A
,
Borboa-Olivares
H
,
Parra-Hernandez
SB
,
Montoya-Estrada
A
,
Gonzalez-Marquez
H
, et al
.
Regulation of MMP-2 by IL-8 in vascular endothelial cells: probable mechanism for endothelial dysfunction in women with preeclampsia
.
Int J Mol Sci
.
2023
;
25
(
1
):
122
.
33.
Blaj
LA
,
Cucu
AI
,
Tamba
BI
,
Turliuc
MD
.
The role of the NF-kB pathway in intracranial aneurysms
.
Brain Sci
.
2023
;
13
(
12
):
1660
.
34.
Shima
Y
,
Sasagawa
S
,
Ota
N
,
Oyama
R
,
Tanaka
M
,
Kubota-Sakashita
M
, et al
.
Increased PDGFRB and NF-κB signaling caused by highly prevalent somatic mutations in intracranial aneurysms
.
Sci Transl Med
.
2023
;
15
(
700
):
q7721
.
35.
Sheinberg
DL
,
McCarthy
DJ
,
Elwardany
O
,
Bryant
JP
,
Luther
E
,
Chen
SH
, et al
.
Endothelial dysfunction in cerebral aneurysms
.
Neurosurg Focus
.
2019
;
47
(
1
):
E3
.
36.
Jamous
MA
,
Nagahiro
S
,
Kitazato
KT
,
Tamura
T
,
Aziz
HA
,
Shono
M
, et al
.
Endothelial injury and inflammatory response induced by hemodynamic changes preceding intracranial aneurysm formation: experimental study in rats
.
J Neurosurg
.
2007
;
107
(
2
):
405
11
.
37.
Li
JJ
,
Zhao
XY
,
Wang
Y
,
Xu
R
,
Di
XH
,
Zhang
Y
, et al
.
Endothelial KCa3.1 and KCa2.3 mediate S1P (Sphingosine-1-Phosphate)-Dependent vasodilation and blood pressure homeostasis
.
Arterioscler Thromb Vasc Biol
.
2023
;
43
(
5
):
726
38
.
38.
Patel
A
,
Pietromicca
JG
,
Venkatesan
M
,
Maity
S
,
Bard
JE
,
Madesh
M
, et al
.
Modulation of the mitochondrial Ca(2+) uniporter complex subunit expression by different shear stress patterns in vascular endothelial cells
.
Physiol Rep
.
2023
;
11
(
3
):
e15588
.
39.
Laaksamo
E
,
Tulamo
R
,
Baumann
M
,
Dashti
R
,
Hernesniemi
J
,
Juvela
S
, et al
.
Involvement of mitogen-activated protein kinase signaling in growth and rupture of human intracranial aneurysms
.
Stroke
.
2008
;
39
(
3
):
886
92
.
40.
Takagi
Y
,
Ishikawa
M
,
Nozaki
K
,
Yoshimura
S
,
Hashimoto
N
:
Increased expression of phosphorylated c-Jun amino-terminal kinase and phosphorylated c-Jun in human cerebral aneurysms: role of the c-Jun amino-terminal kinase/c-Jun pathway in apoptosis of vascular walls
.
Neurosurgery
.
2002
;
51
(
4
):
997
1002
.
41.
Bo
Z
,
Bin
G
,
Jing
W
,
Cuifang
W
,
Liping
A
,
Jinglin
M
, et al
.
Fluid shear stress promotes osteoblast proliferation via the Gαq-ERK5 signaling pathway
.
Connect Tissue Res
.
2016
;
57
(
4
):
299
306
.
42.
Ding
N
,
Geng
B
,
Li
Z
,
Yang
Q
,
Yan
L
,
Wan
L
, et al
.
Fluid shear stress promotes osteoblast proliferation through the NFATc1-ERK5 pathway
.
Connect Tissue Res
.
2019
;
60
(
2
):
107
16
.
43.
Bin
G
,
Bo
Z
,
Jing
W
,
Jin
J
,
Xiaoyi
T
,
Cong
C
, et al
.
Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways
.
Exp Cel Res
.
2016
;
343
(
2
):
208
17
.
44.
Li
P
,
Ma
YC
,
Sheng
XY
,
Dong
HT
,
Han
H
,
Wang
J
, et al
.
Cyclic fluid shear stress promotes osteoblastic cells proliferation through ERK5 signaling pathway
.
Mol Cel Biochem
.
2012
;
364
(
1–2
):
321
7
.
45.
Ma
C
,
Geng
B
,
Zhang
X
,
Li
R
,
Yang
X
,
Xia
Y
.
Fluid shear stress suppresses osteoclast differentiation in RAW264.7 cells through extracellular signal-regulated kinase 5 (ERK5) signaling pathway
.
Med Sci Monit
.
2020
;
26
:
e918370
.
46.
Kyriakis
JM
,
Avruch
J
.
Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update
.
Physiol Rev
.
2012
;
92
(
2
):
689
737
.
47.
Brazao
SC
,
Lima
GF
,
Autran
LJ
,
Mendes
A
,
Dos Santos
BA
,
Magliano
DC
, et al
.
Subacute administration of cilostazol modulates PLC-γ/PKC-α/p38/NF-kB pathway and plays vascular protective effects through eNOS activation in early stages of atherosclerosis development
.
Life Sci
.
2023
;
332
:
122082
.
48.
Tsioumpekou
M
,
Papadopoulos
N
,
Burovic
F
,
Heldin
CH
,
Lennartsson
J
.
Platelet-derived growth factor (PDGF)-induced activation of Erk5 MAP-kinase is dependent on Mekk2, Mek1/2, PKC and PI3-kinase, and affects BMP signaling
.
Cell Signal
.
2016
;
28
(
9
):
1422
31
.
49.
Hasan
DM
,
Starke
RM
,
Gu
H
,
Wilson
K
,
Chu
Y
,
Chalouhi
N
, et al
.
Smooth muscle peroxisome proliferator-activated receptor gamma plays a critical role in formation and rupture of cerebral aneurysms in mice in vivo
.
Hypertension
.
2015
;
66
(
1
):
211
20
.
50.
Halabi
CM
,
Beyer
AM
,
de Lange
WJ
,
Keen
HL
,
Baumbach
GL
,
Faraci
FM
, et al
.
Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension
.
Cell Metab
.
2008
;
7
(
3
):
215
26
.
51.
Beyer
AM
,
de Lange
WJ
,
Halabi
CM
,
Modrick
ML
,
Keen
HL
,
Faraci
FM
, et al
.
Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet
.
Circ Res
.
2008
;
103
(
6
):
654
61
.
52.
Kuo
MY
,
Ou
HC
,
Lee
WJ
,
Kuo
WW
,
Hwang
LL
,
Song
TY
, et al
.
Ellagic acid inhibits oxidized low-density lipoprotein (OxLDL)-induced metalloproteinase (MMP) expression by modulating the protein kinase C-α/extracellular signal-regulated kinase/peroxisome proliferator-activated receptor γ/nuclear factor-κB (PKC-α/ERK/PPAR-γ/NF-κB) signaling pathway in endothelial cells
.
J Agric Food Chem
.
2011
;
59
(
9
):
5100
8
.
53.
Duraisamy
P
,
Angusamy
A
,
Ravi
S
,
Krishnan
M
,
Martin
LC
,
Manikandan
B
, et al
.
Phytol from Scoparia dulcis prevents NF-κB-mediated inflammatory responses during macrophage polarization
.
3 Biotech
.
2024
;
14
:
80
.
54.
Shimada
K
,
Furukawa
H
,
Wada
K
,
Korai
M
,
Wei
Y
,
Tada
Y
, et al
.
Protective role of peroxisome proliferator-activated receptor-gamma in the development of intracranial aneurysm rupture
.
Stroke
.
2015
;
46
(
6
):
1664
72
.
You do not currently have access to this content.