Background: Intracerebral hemorrhage (ICH) is a subtype of stroke with a severe high mortality and disability rate and accounts for about 10-15% of all strokes. The oppression and destruction by hematoma to brain tissue cause the primary brain injury. The inflammation and coagulation response after ICH would accelerate the formation of brain edema around hematoma, resulting in a more severe and durable injury. Currently, treatments for ICH are focusing on the primary injury including reducing intracranial hypertension, blood pressure control, and rehabilitation. There is a short-of-effective medical treatment for secondary inflammation and reducing brain edema in ICH patients. So, it is very important to study on the relationship between brain edema and ICH. Summary: Many molecular and cellular mechanisms contribute to the formation and progress of brain edema after ICH; inhibition of brain edema provides favorable outcome of ICH. Key Messages: This review mainly discusses the pathology and mechanism of brain edema, the effects of brain edema on ICH, and the methods of treating brain edema after ICH.

1.
Flower O, Smith M: The acute management of intracerebral hemorrhage. Curr Opin Crit Care 2011;17:106-114.
2.
van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ: Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol 2010;9:167-176.
3.
Keep RF, Hua Y, Xi G: Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 2012;11:720-731.
4.
Xi G, Keep RF, Hoff JT: Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 2006;5:53-63.
5.
Hoff JT, Xi G: Brain edema from intracerebral hemorrhage. Acta Neurochir Suppl 2003;86:11-15.
6.
Bakhshayesh B, Hosseininezhad M, Saadat SN, Ansar MM, Ramezani H, Saadat SM: Iron overload is associated with perihematoma edema growth following intracerebral hemorrhage that may contribute to in-hospital mortality and long-term functional outcome. Curr Neurovasc Res 2014;11:248-253.
7.
Wang J, Doré S: Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 2007;27:894-908.
8.
Lu L, Barfejani AH, Qin T, Dong Q, Ayata C, Waeber C: Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Res 2014;1555:89-96.
9.
Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, Yan Y, Huang D, Yu C, Shi FD: Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol 2014;71:1092-1101.
10.
Lee IN, Cheng WC, Chung CY, Lee MH, Lin MH, Kuo CH, Weng HH, Yang JT: Dexamethasone reduces brain cell apoptosis and inhibits inflammatory response in rats with intracerebral hemorrhage. J Neurosci Res 2015;93:178-188.
11.
Selim M: Deferoxamine mesylate: a new hope for intracerebral hemorrhage: from bench to clinical trials. Stroke 2009;40(3 suppl):S90-S91.
12.
Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA: Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 2011;42:73-80.
13.
Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE, Broderick JP, Brott TG: Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter. Stroke 1996;27:490-497.
14.
Ziai WC: Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke 2013;44(6 suppl 1):S74-S78.
15.
Chen S, Zeng L, Hu Z: Progressing haemorrhagic stroke: categories, causes, mechanisms and managements. J Neurol 2014;261:2061-2078.
16.
Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT: Role of blood clot formation on early edema development after experimental intracerebral hemorrhage. Stroke 1998;29:2580-2586.
17.
Kuroiwa T, Shibutani M, Tajima T, Hirasawa H, Okeda R: Hydrostatic pressure versus osmotic pressure in the development of vasogenic brain edema induced by cold injury. Adv Neurol 1990;52:11-19.
18.
Linfante I, Llinas RH, Caplan LR, Warach S: MRI features of intracerebral hemorrhage within 2 hours from symptom onset. Stroke 1999;30:2263-2267.
19.
Butcher KS, Baird T, MacGregor L, Desmond P, Tress B, Davis S: Perihematomal edema in primary intracerebral hemorrhage is plasma derived. Stroke 2004;35:1879-1885.
20.
Gebel JM, Brott TG, Sila CA, Tomsick TA, Jauch E, Salisbury S, Khoury J, Miller R, Pancioli A, Duldner JE, Topol EJ, Broderick JP: Decreased perihematomal edema in thrombolysis-related intracerebral hemorrhage compared with spontaneous intracerebral hemorrhage. Stroke 2000;31:596-600.
21.
Kuroiwa T, Cahn R, Juhler M, Goping G, Campbell G, Klatzo I: Role of extracellular proteins in the dynamics of vasogenic brain edema. Acta Neuropathol 1985;66:3-11.
22.
Wagner KR, Dean C, Beiler S, Bryan DW, Packard BA, Smulian AG, Linke MJ, de Courten-Myers GM: Plasma infusions into porcine cerebral white matter induce early edema, oxidative stress, pro-inflammatory cytokine gene expression and DNA fragmentation: implications for white matter injury with increased blood-brain-barrier permeability. Curr Neurovasc Res 2005;2:149-155.
23.
Gong C, Hoff JT, Keep RF: Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Res 2000;871:57-65.
24.
Wang J: Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 2010;92:463-477.
25.
Mracsko E, Javidi E, Na SY, Kahn A, Liesz A, Veltkamp R: Leukocyte invasion of the brain after experimental intracerebral hemorrhage in mice. Stroke 2014;45:2107-2114.
26.
Hammond MD, Ai Y, Sansing LH: Gr1+ macrophages and dendritic cells dominate the inflammatory infiltrate 12 hours after experimental intracerebral hemorrhage. Transl Stroke Res 2012;3:s125-s131.
27.
Nguyen HX, O'Barr TJ, Anderson AJ: Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J Neurochem 2007;102:900-912.
28.
Joice SL, Mydeen F, Couraud PO, Weksler BB, Romero IA, Fraser PA, Easton AS: Modulation of blood-brain barrier permeability by neutrophils: in vitro and in vivo studies. Brain Res 2009;1298:13-23.
29.
Zhao X, Sun G, Zhang J, Strong R, Song W, Gonzales N, Grotta JC, Aronowski J: Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 2007;61:352-362.
30.
van Rossum D, Hanisch UK: Microglia. Metab Brain Dis 2004;19:393-411.
31.
Lin S, Yin Q, Zhong Q, Lv FL, Zhou Y, Li JQ, Wang JZ, Su BY, Yang QW: Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J Neuroinflammation 2012;9:46.
32.
Wang J, Doré S: Heme oxygenase-1 exacerbates early brain injury after intracerebral haemorrhage. Brain 2007;130(pt 6):1643-1652.
33.
Taylor RA, Sansing LH: Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin Dev Immunol 2013;2013:746068.
34.
Teng W, Wang L, Xue W, Guan C: Activation of TLR4-mediated NFkappaB signaling in hemorrhagic brain in rats. Mediators Inflamm 2009;2009:473276.
35.
Yang Z, Liu B, Zhong L, Shen H, Lin C, Lin L, Zhang N, Yuan B: Toll-like receptor-4-mediated autophagy contributes to microglial activation and inflammatory injury in mouse models of intracerebral haemorrhage. Neuropathol Appl Neurobiol 2015;41:e95-e106.
36.
Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K: Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 2011;70:646-656.
37.
Lee KR, Kawai N, Kim S, Sagher O, Hoff JT: Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg 1997;86:272-278.
38.
Guan JX, Sun SG, Cao XB, Chen ZB, Tong ET: Effect of thrombin on blood brain barrier permeability and its mechanism. Chin Med J (Engl) 2004;117:1677-1681.
39.
Senn R, Elkind MS, Montaner J, Christ-Crain M, Katan M: Potential role of blood biomarkers in the management of nontraumatic intracerebral hemorrhage. Cerebrovasc Dis 2014;38:395-409.
40.
Liu DZ, Ander BP, Xu H, Shen Y, Kaur P, Deng W, Sharp FR: Blood-brain barrier breakdown and repair by Src after thrombin-induced injury. Ann Neurol 2010;67:526-533.
41.
Liu DZ, Sharp FR: The dual role of SRC kinases in intracerebral hemorrhage. Acta Neurochir Suppl 2011;111:77-81.
42.
Babu R, Bagley JH, Di C, Friedman AH, Adamson C: Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 2012;32:E8.
43.
Ohnishi M, Katsuki H, Fujimoto S, Takagi M, Kume T, Akaike A: Involvement of thrombin and mitogen-activated protein kinase pathways in hemorrhagic brain injury. Exp Neurol 2007;206:43-52.
44.
Bhasin RR, Xi G, Hua Y, Keep RF, Hoff JT: Experimental intracerebral hemorrhage: effect of lysed erythrocytes on brain edema and blood-brain barrier permeability. Acta Neurochir Suppl 2002;81:249-251.
45.
Shi BZ, Meng XF, Yang JX, Hao XW, Cui T, Lu ZF, Zhang HR, Zhou JC, Liu JF: Effect of erythrocytes on brain water content and haem oxygenase-1 expression in rats with traumatic intracerebral haemorrhage. Acta Neurochir (Wien) 2012;154:1081-1086; discussion 1086.
46.
Qing WG, Dong YQ, Ping TQ, Lai LG, Fang LD, Min HW, Xia L, Heng PY: Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg 2009;110:462-468.
47.
Xu J, Qiu GP, Huang J, Zhang B, Sun SQ, Gan SW, Lu WT, Wang KJ, Huang SQ, Zhu SJ: Internalization of aquaporin-4 after collagenase-induced intracerebral hemorrhage. Anat Rec (Hoboken) 2015;298:554-561.
48.
Wang YC, Zhou Y, Fang H, Lin S, Wang PF, Xiong RP, Chen J, Xiong XY, Lv FL, Liang QL, Yang QW: Toll-like receptor 2/4 heterodimer mediates inflammatory injury in intracerebral hemorrhage. Ann Neurol 2014;75:876-889.
49.
Hertz L, Xu J, Chen Y, Gibbs ME, Du T, et al: Antagonists of the vasopressin V1 receptor and of the β(1)-adrenoceptor inhibit cytotoxic brain edema in stroke by effects on astrocytes - but the mechanisms differ. Curr Neuropharmacol 2014;12:308-323.
50.
Zhao XY, Wu CF, Yang J, Gao Y, Sun FJ, Wang DX, Wang CH, Lin BC: Effect of arginine vasopressin on the cortex edema in the ischemic stroke of Mongolian gerbils. Neuropeptides 2015;51:55-62.
51.
Manaenko A, Fathali N, Khatibi NH, Lekic T, Shum KJ, Martin R, Zhang JH, Tang J: Post-treatment with SR49059 improves outcomes following an intracerebral hemorrhagic stroke in mice. Acta Neurochir Suppl 2011;111:191-196.
52.
Manaenko A, Fathali N, Khatibi NH, Lekic T, Hasegawa Y, Martin R, Tang J, Zhang JH: Arginine-vasopressin V1a receptor inhibition improves neurologic outcomes following an intracerebral hemorrhagic brain injury. Neurochem Int 2011;58:542-548.
53.
Qureshi AI, Ali Z, Suri MF, Shuaib A, Baker G, Todd K, Guterman LR, Hopkins LN: Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit Care Med 2003;31:1482-1489.
54.
da Silva-Candal A, Vieites-Prado A, Gutiérrez-Fernández M, Rey RI, Argibay B, Mirelman D, Sobrino T, Rodríguez-Frutos B, Castillo J, Campos F: Blood glutamate grabbing does not reduce the hematoma in an intracerebral hemorrhage model but it is a safe excitotoxic treatment modality. J Cereb Blood Flow Metab 2015;35:1206-1212.
55.
Wang LK, Hong Z, Wu GF, Li C: Perihematomal endothelin-1 level is associated with an increase in blood-brain barrier permeability in a rabbit model of intracerebral hematoma. Chin Med J (Engl) 2013;126:3433-3438.
56.
Bickford JS, Ali NF, Nick JA, Al-Yahia M, Beachy DE, Doré S, Nick HS, Waters MF: Endothelin-1-mediated vasoconstriction alters cerebral gene expression in iron homeostasis and eicosanoid metabolism. Brain Res 2014;1588:25-36.
57.
Zazulia AR, Diringer MN, Derdeyn CP, Powers WJ: Progression of mass effect after intracerebral hemorrhage. Stroke 1999;30:1167-1173.
58.
Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP: Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002;33:2636-2641.
59.
Gupta M, Verma R, Parihar A, Garg RK, Singh MK, Malhotra HS: Perihematomal edema as predictor of outcome in spontaneous intracerebral hemorrhage. J Neurosci Rural Pract 2014;5:48-54.
60.
Sonni S, Lioutas VA, Selim MH: New avenues for treatment of intracranial hemorrhage. Curr Treat Options Cardiovasc Med 2014;16:277.
61.
Qureshi AI, Palesch YY, Martin R, Novitzke J, Cruz-Flores S, Ehtisham A, Ezzeddine MA, Goldstein JN, Hussein HM, Suri MF, Tariq N: Effect of systolic blood pressure reduction on hematoma expansion, perihematomal edema, and 3-month outcome among patients with intracerebral hemorrhage: results from the antihypertensive treatment of acute cerebral hemorrhage study. Arch Neurol 2010;67:570-576.
62.
Qureshi AI, Palesch YY, Martin R, Toyoda K, Yamamoto H, Wang Y, Wang Y, Hsu CY, Yoon BW, Steiner T, Butcher K, Hanley DF, Suarez JI: Interpretation and implementation of intensive blood pressure reduction in acute cerebral hemorrhage trial (INTERACT II). J Vasc Interv Neurol 2014;7:34-40.
63.
Qureshi AI, Palesch YY: Antihypertensive treatment of acute cerebral hemorrhage (ATACH) II: design, methods, and rationale. Neurocrit Care 2011;15:559-576.
64.
Kobayashi J, Koga M, Tanaka E, Okada Y, Kimura K, Yamagami H, Okuda S, Hasegawa Y, Shiokawa Y, Furui E, Nakagawara J, Kario K, Okata T, Arihiro S, Sato S, Nagatsuka K, Minematsu K, Toyoda K: Continuous antihypertensive therapy throughout the initial 24 hours of intracerebral hemorrhage: the stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke 2014;45:868-870.
65.
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW: Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 2014;115:25-44.
66.
Joshi S, Singh-Moon R, Wang M, Bruce JN, Bigio IJ, Mayevsky A: Real-time hemodynamic response and mitochondrial function changes with intracarotid mannitol injection. Brain Res 2014;1549:42-51.
67.
Rapoport SI: Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cell Mol Neurobiol 2000;20:217-230.
68.
Kaufmann AM, Cardoso ER: Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992;77:584-589.
69.
Diringer MN, Zazulia AR: Osmotic therapy: fact and fiction. Neurocrit Care 2004;1:219-233.
70.
Misra UK, Kalita J, Ranjan P, Mandal SK: Mannitol in intracerebral hemorrhage: a randomized controlled study. J Neurol Sci 2005;234:41-45.
71.
Qureshi AI, Mendelow AD, Hanley DF: Intracerebral haemorrhage. Lancet 2009;373:1632-1644.
72.
Qureshi AI, Wilson DA, Traystman RJ: Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery 1999;44:1055-1063; discussion 1063-1064.
73.
Thenuwara K, Todd MM, Brian JE Jr: Effect of mannitol and furosemide on plasma osmolality and brain water. Anesthesiology 2002;96:416-421.
74.
Mayzler O, Leon A, Eilig I, Fuxman Y, Benifla M, Freixo PC, Gurevich B, Agassi R, Artru AA, Shapria Y: The effect of hypertonic (3%) saline with and without furosemide on plasma osmolality, sodium concentration, and brain water content after closed head trauma in rats. J Neurosurg Anesthesiol 2006;18:24-31.
75.
Morgenstern LB, Hemphill JC 3rd, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messé SR, Mitchell PH, Selim M, Tamargo RJ: Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2010;41:2108-2129.
76.
Sansing LH, Harris TH, Kasner SE, Hunter CA, Kariko K: Neutrophil depletion diminishes monocyte infiltration and improves functional outcome after experimental intracerebral hemorrhage. Acta Neurochir Suppl 2011;111:173-178.
77.
Moxon-Emre I, Schlichter LC: Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol 2011;70:218-235.
78.
Wu J, Yang S, Hua Y, Liu W, Keep RF, Xi G: Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir Suppl 2010;106:147-150.
79.
Wasserman JK, Schlichter LC: Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp Neurol 2007;207:227-237.
80.
Zhao F, Hua Y, He Y, Keep RF, Xi G: Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke 2011;42:3587-3593.
81.
Wang J, Tsirka SE: Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage. Stroke 2005;36:613-618.
82.
Rolland WB 2nd, Manaenko A, Lekic T, Hasegawa Y, Ostrowski R, Tang J, Zhang JH: FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir Suppl 2011;111:213-217.
83.
Rolland WB, Lekic T, Krafft PR, Hasegawa Y, Altay O, Hartman R, Ostrowski R, Manaenko A, Tang J, Zhang JH: Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp Neurol 2013;241:45-55.
84.
Yang JT, Lee TH, Lee IN, Chung CY, Kuo CH, Weng HH: Dexamethasone inhibits ICAM-1 and MMP-9 expression and reduces brain edema in intracerebral hemorrhagic rats. Acta Neurochir (Wien) 2011;153:2197-2203.
85.
Gong Y, Xi GH, Keep RF, Hoff JT, Hua Y: Complement inhibition attenuates brain edema and neurological deficits induced by thrombin. Acta Neurochir Suppl 2005;95:389-392.
86.
Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G: Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke 2009;40:2241-2243.
87.
Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G: Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke 2014;45:290-292.
88.
Okauchi M, Hua Y, Keep RF, Morgenstern LB, Xi G: Effects of deferoxamine on intracerebral hemorrhage-induced brain injury in aged rats. Stroke 2009;40:1858-1863.
89.
Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G: Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res 2013;4:546-553.
90.
Wan S, Hua Y, Keep RF, Hoff JT, Xi G: Deferoxamine reduces CSF free iron levels following intracerebral hemorrhage. Acta Neurochir Suppl 2006;96:199-202.
91.
Wang J, Zhuang H, Doré S: Heme oxygenase 2 is neuroprotective against intracerebral hemorrhage. Neurobiol Dis 2006;22:473-476.
92.
Wang YC, Wang PF, Fang H, Chen J, Xiong XY, Yang QW: Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury. Stroke 2013;44:2545-2552.
93.
Tapia-Pérez JH, Rupa R, Zilke R, Gehring S, Voellger B, Schneider T: Continued statin therapy could improve the outcome after spontaneous intracerebral hemorrhage. Neurosurg Rev 2013;36:279-287; discussion 287.
94.
Loftspring MC, Johnson HL, Johnson AJ, Clark JF: Depletion of GR-1-positive cells is associated with reduced neutrophil inflammation and astrocyte reactivity after experimental intracerebral hemorrhage. Transl Stroke Res 2012;3(suppl 1):147-154.
95.
Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Doré S: Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 2007;43:408-414.
96.
Lu H, Shen J, Song X, Ge J, Cai R, Dai A, Jiang Z: Protective effect of pyrroloquinoline quinone (PQQ) in rat model of intracerebral hemorrhage. Cell Mol Neurobiol 2015;35:921-930.
97.
Chu H, Tang Y, Dong Q: Protection of granulocyte-colony stimulating factor to hemorrhagic brain injuries and its involved mechanisms: effects of vascular endothelial growth factor and aquaporin-4. Neuroscience 2014;260:59-72.
98.
Chu H, Ding H, Tang Y, Dong Q: Erythropoietin protects against hemorrhagic blood-brain barrier disruption through the effects of aquaporin-4. Lab Invest 2014;94:1042-1053.
99.
Okuda M, Suzuki R, Moriya M, Fujimoto M, Chang CW, Fujimoto T: The effect of hematoma removal for reducing the development of brain edema in cases of putaminal hemorrhage. Acta Neurochir Suppl 2006;96:74-77.
100.
Kaya RA, Türkmenoğlu O, Ziyal IM, Dalkiliç T, Sahin Y, Aydin Y: The effects on prognosis of surgical treatment of hypertensive putaminal hematomas through transsylvian transinsular approach. Surg Neurol 2003;59:176-183; discussion 183.
101.
Zuo Y, Cheng G, Gao DK, Zhang X, Zhen HN, Zhang W, Xiao SC: Gross-total hematoma removal of hypertensive basal ganglia hemorrhages: a long-term follow-up. J Neurol Sci 2009;287:100-104.
102.
Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, Karimi A, Shaw MD, Barer DH: Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the international surgical trial in intracerebral haemorrhage (STICH): a randomised trial. Lancet 2005;365:387-397.
103.
Gregson BA, Broderick JP, Auer LM, Batjer H, Chen XC, Juvela S, Morgenstern LB, Pantazis GC, Teernstra OP, Wang WZ, Zuccarello M, Mendelow AD: Individual patient data subgroup meta-analysis of surgery for spontaneous supratentorial intracerebral hemorrhage. Stroke 2012;43:1496-1504.
104.
Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM: Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet 2013;382:397-408.
105.
Zhou X, Chen J, Li Q, Ren G, Yao G, Liu M, Dong Q, Guo J, Li L, Guo J, Xie P: Minimally invasive surgery for spontaneous supratentorial intracerebral hemorrhage: a meta-analysis of randomized controlled trials. Stroke 2012;43:2923-2930.
106.
Kirollos RW, Tyagi AK, Ross SA, van Hille PT, Marks PV: Management of spontaneous cerebellar hematomas: a prospective treatment protocol. Neurosurgery 2001;49:1378-1386; discussion 1386-1387.
107.
Witsch J, Neugebauer H, Zweckberger K, Jüttler E: Primary cerebellar haemorrhage: complications, treatment and outcome. Clin Neurol Neurosurg 2013;115:863-869.
108.
Papacocea A, Papacocea T, Dănăilă L, Ion D, Bădărău A, Papacocea R: [Primary intracerebellar hematomas: surgical indications, prognosis]. Chirurgia (Bucur) 2010;105:805-807.
109.
Barnes B, Hanley DF, Carhuapoma JR: Minimally invasive surgery for intracerebral haemorrhage. Curr Opin Crit Care 2014;20:148-152.
110.
Dey M, Stadnik A, Awad IA: Thrombolytic evacuation of intracerebral and intraventricular hemorrhage. Curr Cardiol Rep 2012;14:754-760.
111.
Wu G, Li C, Wang L, Mao Y, Hong Z: Minimally invasive procedures for evacuation of intracerebral hemorrhage reduces perihematomal glutamate content, blood-brain barrier permeability and brain edema in rabbits. Neurocrit Care 2011;14:118-126.
112.
Wang L, Wang F, Wu G, Shi J: Early-stage minimally invasive procedures decrease perihematomal endothelin-1 levels and improve neurological functioning in a rabbit model of intracerebral hemorrhage. Neurol Res 2015;37:320-327.
113.
Lian LF, Xu F, Tang ZP, Xue Z, Liang QM, Hu Q, Zhu WH, Kang HC, Liu XY, Wang FR, Zhu SQ: Intraclot recombinant tissue-type plasminogen activator reduces perihematomal edema and mortality in patients with spontaneous intracerebral hemorrhage. J Huazhong Univ Sci Technolog Med Sci 2014;34:165-171.
114.
Krylov VV, Burov SA, Dash'ian VG, Galankina IE: [Local fibrinolysis in surgical treatment of non-traumatic intracranial hemorrhages]. Vestn Ross Akad Med Nauk 2013;7:24-31.
115.
Li Y, Zhang H, Wang X, She L, Yan Z, Zhang N, Du R, Yan K, Xu E, Pang L: Neuroendoscopic surgery versus external ventricular drainage alone or with intraventricular fibrinolysis for intraventricular hemorrhage secondary to spontaneous supratentorial hemorrhage: a systematic review and meta-analysis. PLoS One 2013;8:e80599.
116.
Liu J, Huang Y, Wang A: Diagnosis and treatment of intracerebral tension hematoma following cerebral hemorrhage. J Int Neurol Neurosurg 2009;5:400-402.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.