Ischemic penumbra defines the existence of tissue at risk of infarction and which is, hence, potentially salvageable and the target for current stroke reperfusion and neuroprotective therapies. Penumbral tissue evolves toward irreversibly damaged tissue at different rates in individual stroke patients yielding different therapeutic windows depending on the individual duration of risk of infarction of this tissue. An accurate identification of the penumbra is then necessary in order to individualize the window of opportunity for therapeutic interventions. Imaging techniques, although helpful, may not give the most accurate information as to the existence of penumbra given that the threshold for identification of penumbra varies depending on the technique used. A better identification of the true penumbral tissue might be based on the cascade of molecular events that are responsible for the evolution of the penumbra toward infarcted tissue. Multiple penumbras can be defined in molecular terms taking into account which vessel is occluded, the time of evolution of the ischemia, the degree of the ischemia, and the sensitivity to ischemia of the different cells. Future studies are necessary to clarify whether the enhancement of cytoprotective mechanisms, and/or the block of cytotoxic mechanisms confirming the existence of penumbra at different times of ischemic evolution, are effective neuroprotective strategies.

1.
Ginsberg MD: Adventures in the pathophysiology of brain ischemia: penumbra, gene expression. Neuroprotection: the 2002 Thomas Willis Lecture. Stroke 2003;34:214–223.
2.
Fisher M: Characterizing the target for acute stroke treatment. Stroke 1997;28:866–872.
3.
Baron JC, von Kummer R, del Zoppo GJ: Treatment of acute ischemic stroke: challenging the concept of a rigid and universal time window. Stroke 1995;26:2219–2222.
4.
NINDS rt-PA Stroke Group: Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995;333:1581–1587.
5.
Hacke W, Kaste M, Fieschi C, von Kummer R, Dávalos A, Deier D, Larrue V, Bluhmki E, Davis S, Donan J, Scheneider D, Díez-Tejedor E, Trovillas P, for the Second European-Australian Acute Stroke Study Investigators: Randomised double-blind, placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischemic stroke (ECASS II). Lancet 1998;352:1245–1251.
6.
Silver B, Weber J, Fisher M: Medical therapy for ischemic stroke. Clin Neuropharmacol 1996;19:101–128.
7.
Gladstone DJ, Black SE, Hakim AM, for the Heart and Stroke Foundation of Ontario Centre of Excellence in Stroke Recovery: Toward wisdom from failure. Lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 2002;33:2123–2136.
8.
Wahlgren NG, Ahmed N: Neuroprotection in cerebral ischaemia: facts and fancies – the need for new approaches. Cerebrovasc Dis 2004;17(suppl 1):153–166.
9.
Heiss WD, Sobesky J, Hesselmann V: Identifying thresholds for penumbra and irreversible tissue damage. Stroke 2004;35(suppl I):2671–2674.
10.
Kidwell CS, Alger JR, Saver JL: Evolving paradigms in neuroimaging of the ischemic penumbra. Stroke 2004;35(suppl I):2662–2665.
11.
Dávalos A, Blanco M, Pedraza S, Leira R, Castellanos M, Pumar JM, Silva Y, Serena J, Castillo J: The clinical-DWI mismatch. A new diagnostic approach to the brain tissue at risk of infarction. Neurology 2004;62:2187–2192.
12.
Weinstein PR, Hong S, Sharp FR: Molecular identification of the ischemic penumbra. Stroke 2004;35(suppl I):2666–2670.
13.
Sharp FR, Lu A, Tang Y, Millhorn DE: Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 2000;20:1011–1032.
14.
Kogure T, Kogure K: Molecular and biochemical events within the brain subjected to cerebral ischemia. Clin Neurosci 1997;4:179–183.
15.
Samdani AF, Dawson TM, Dawson VI: Nitric oxide synthase in model of focal ischemia. Stroke 197; 28:1283–1288.
16.
Hossman KA: Periinfarct depolarizations. Cerebrovasc Brain Metab Rev 1996;8:195–208.
17.
Mies G, Iijima T, Hossmann KA: Correlation between periinfarct DC shifts and ischemic neuronal damage in rat. Neuroreport 1993;4:709–711.
18.
Mies G, Kohno K, Hossmann KA: Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J Cereb Blood Flow Metab 1994;14:802–807.
19.
Gill R, Andine P, Hillered L, Persson L, Hagberg H: The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischemia in the rat. J Cereb Blood Flow Metab 1992;12:371–379.
20.
Tatlisumak T, Takano K, Meiler MR, Fisher M: A glycine site antagonist, ZD9379 reduces the number of spreading depressins and infarct size in rats with permanent middle cerebral artery occlusion. Stroke 1998;29:190–195.
21.
Castillo J, Davalos A, Naveiro J, Noya M: Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 1996;27:1060–1065.
22.
Castillo J, Dávalos A, Noya M: Progression of ischaemic stroke and excitotoxic amino acids. Lancet 1997;349:79–83.
23.
Serena J, Leira R, Castillo J, Pumar JM, Castellanos M, Dávalos A: Neurological deterioration in acute lacunar infarctions. The role of excitotoxicity and inhibitory neurotransmitters. Stroke 2001;32:1154–1161.
24.
Castellanos M, Blanco M, Pedraza S, García M, Silva Y, Leira R, Dávalos A: Molecular markers of progressing stroke are associated with diffusion-weighted MRI lesion growth in patients with acute ischemic stroke. Stroke 2004;35:247.
25.
Castillo J, Leira R: Predictors of deteriorating cerebral infarct: role of inflammatory mechanisms. Would its early treatment be useful? Cerebrosvasc Dis 2001;11(suppl 1):40–48.
26.
Vila N, Castillo J, Dávalos A, Chamorro A: Proinflammatory cytokines and early stroke progression. Stroke 2000;31:2325–2329.
27.
Castellanos M, Castillo J, García MM, Leira R, Serena J, Chamorro A, Dávalos A: Inflammation-mediated damage in progressing lacunar infarctions. Stroke 2002;33:982–987.
28.
Chen H, Chopp M, Zhang RL, Bodzin G, Chen Q, Rusche JR, Todd RF: Anti-CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 1994;35:458–463.
29.
Du C, Hu R, Csernansky CA, Hsu CY, Choi DW: Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab 1996;16:196–201.
30.
Nakase T, Söhl G, Theis M, Willecke K, Naus CCG: Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin-43 in astrocytes. Am J Pathol 2004;164:2067–2075.
31.
Gadian DG, Frackowiak RS, Crockard HA, Proctor E, Allen K, Williams SR, Russell RW: Acute cerebral ischemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. I. Methodology. J Cereb Blood Flow Metab 1987;7:199–206.
32.
Higuchi T, Fernandez EJ, Maudsley AA, Shimizu H, Weiner MW, Weinstein PR: Mapping of lactate and n-acetyl-l-aspartate predicts infarction during acute focal ischemia: in vivo 1H magnetic resonance spectroscopy in rats. Neurosurgery 1996;38:121–130.
33.
Frykholm P, Hillered L, Langstrom B, Persson L, Valtysson J, Enblad P: Relationship between cerebral blood flow and oxygen metabolism, and extracellular glucose and lactate concentrations during middle cerebral artery occlusion and reperfusion: a microdialysis and positron emission tomography study in nonhuman primates. J Neurosurg 2005;102:1076–1084.
34.
Bruhn T, Christensen T, Diener NH: Uptake of glutamate is impaired in the cortical penumbra of the rat following middle cerebral artery occlusion: an in vivo microdialysis extraction study. J Neurosci Res 2003;71:551–558.
35.
Bolay H, Gürsoy-Özdemir Y, Sara Y, Onur R, Can A, Dalkara T: Persistent defect in transmitter release an synapsis phosphorylation in cerebral cortex after transient moderate ischemia injury. Stroke 2002;33:1369–1375.
36.
Sommer C, Kollmar R, Schwab S, Kiessling M, Schabitz WR: Exogenous brain-derived neurotrophic factor prevents postischemic downregulation of [3H]muscimol binding to GABAA receptors in the cortical penumbra. Brain Res Mol Brain Res 2003;111:24–30.
37.
Rebel A, Koehfer RC, Martin LJ: In situ immunoradiographic method for quantification of specific proteins in normal and ischemia brain regions. J Neurosci Methods 2005;143:227–235.
38.
Mies G, Ishimaru S, Xie Y, Seo K, Hossmann KA: Ischemic thresholds of cerebral protein synthesis and energy state following middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 1991;11:753–761.
39.
Massa SM, Swanson RA, Shark FR: The stress gene response in brain. Cerebrovasc Brain Metab Rev 1996;8:95–158.
40.
Nowak TS Jr, Jacewiwick M: The heat shock/stress response in focal cerebral ischemia. Brain Pathol 1994;4:67–76.
41.
Kobayashi S, Welsh FA: Regional alterations of ATP and heat-shock protein-72 mRNA following hypoxia-ischemia in neonatal rat brain. J Cereb Blood Flow Metab 1995;15:1047–1056.
42.
Tsuchiya D, Hong S, Matsumori Y, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR: Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery 2003;53:1179–1188.
43.
States BA, Honkaniemi J, Weinstein PR, Sharp FR: DNA fragmentation and HSP70 protein induction in hippocampus and cortex occurs in separate neurons following permanent middle cerebral artery occlusions. J Cereb Blood Flow Metab 1996;16:1165–1175.
44.
Plumier JC, Armstrong JN, Wood NI, Babity JM, Hamilton TC, Hunter AJ, Robertson HA, Currie RW: Differential expression of c-fos, Hsp70 and Hsp27 after protothrombotic injury in the rat brain. Brain Res Mol Brain Res 1997;45:239–246.
45.
Piao CS, Kim SW, Kim JB, Lee JK: Co-induction of αB-crystallin and MAPKAPK-2 in astrocytes in the penumbra after transient focal cerebral ischemia. Exp Brain Res 2005;163:421–429.
46.
Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR: Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res Mol Brain Res 1996;37:201–208.
47.
Hata R, Mies G, Wiessner C, Hossmann KA: Differential expression of c-fos and hsp72 mRNA in focal cerebral ischemia of mice. Neuroreport 1998;9:27–32.
48.
Hata R, Maeda K, Herman D, Mies G, Hossmann KA: Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 2000;20:937–946.
49.
Xu Z, Jiang J, Ford G, Ford BD: Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem Biophys Res Commun 2004;322:440–446.
50.
Koistinaho J, Pasonen S, Yrjanheikki J, Chan PH: Spreading depression-induced gene expression is regulated by plasma glucose. Stroke 1999;30:114–119.
51.
Sairanen T, Ristimaki A, Karjalinen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ: Cyclooxygenase-2 is induced globally in infarcted human brain. Ann Neurol 1998;43:738–747.
52.
Nagayama M, Niwa K, Nagayama T, Ross ME, Iadecola C: The cyclooxygenase-2 inhibitor NS-398 ameliorates ischemic brain injury in wild-type mice but not in mice with deletion of the inducible nitric oxide synthase gene. J Cereb Blood Flow Metab 1999;19:1213–1219.
53.
Petzold GC, Windmuller O, Haack S, Major S, Buchheim K, Megow D, Gabriel S, Lehmann TN, Drenckhahn C, Peters O, Meierkord H, Heinemann U, Dirnagl U, Dreier JP: Increased extracellular K+ concentration reduces the efficacy of N-methyl-D-aspartate receptor antagonists to block spreading depression-like depolarizations and spreading ischemia. Stroke 2005;36:1270–1277.
54.
Castillo J, Moro MA, Blanco M, Leira R, Serena J, Lizasoain I, Dávalos A: The release of tumor necrosis factor-α is associated with ischemic tolerance in human stroke. Ann Neurol 2003;54:811–819.
55.
Pradillo JM, Romera C, Hurtado O, Cárdenas A, Moro MA, Leza JC, Dávalos A, Castillo J, Lorenso P, Lizasoain I: TNFR1 upregulation mediates tolerance after brain ischemic preconditioning. J Cereb Blood Flow Metab 2005;25:193–203.
56.
Bunn HF, Poyton RO: Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 1996;76:839–885.
57.
Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR: Induction of hypoxia-inducible factor-1 and its target genes following focal ischemia in rat brain. Eur J Neurosci 1999;11:4159–4170.
58.
Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, Maeda M, Fagan SC, Carroll JE, Conway SJ: SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 2004;63:84–96.
59.
Fang YC, Wu JS, Chen JJ, Cheung WM, Tseng PH, Tam KB, Shyue SK, Chen JJ, Lin TN: Induction of prostacyclin/PGI2 synthase expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2005. Adv online publ, Aug 10, 2005.
60.
Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R, Ginsberg MD: DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain 2002;108:81–93.
61.
An G, Lin TN, Liu JS, Xue JJ, He YY, Hsu CY: Expression of c-fos and c-jun family genes after focal cerebral ischemia. Ann Neurol 1993;33:457–464.
62.
Collaco-Moraes Y, Aspey BS, de Belleroche JS, Harrison MJ: Focal ischemia causes an extensive induction of immediate early genes that are sensitive to MK-801. Stroke 1994;25:1855–1861.
63.
Herrera DG, Robertson HA: Application of potassium chloride to the brain surface induces the c-fos proto-oncogene: reversal by MK-801. Brain Res 1990;510:166–170.
64.
Chen J, Graham SH, Chan PH, Lan J, Zhou RL, Simon RP: Bcl-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport 1995;6:394–398.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.