Immune checkpoints are crucial for the maintenance of self-tolerance and for the modulation of immune responses in order to minimize tissue damage. Tumor cells take advantage of these mechanisms to evade immune recognition. A significant proportion of tumors, including breast cancers, can express co-inhibitory molecules that are important formediating the escape from T cell-mediated immune surveillance. The interaction of inhibitory receptors with their ligands can be blocked by specific molecules. Monoclonal antibodies (mAbs) directed against the cytotoxic T lymphocyte-associated antigen-4 (CTLA4) and, more recently, against the programmed cell death protein 1 (PD1), have been approved for the therapy of melanoma (anti-CTLA4 and anti-PD1 mAbs) and non-small cell lung cancer (anti-PD1 mAbs). Moreover, inhibition of PD1 signaling has shown extremely promising signs of activity in breast cancer. An increasing number of molecules directed against other immune checkpoints are currently under clinical development. In this review, we summarize the evidence supporting the implementation of checkpoint inhibition in breast cancer by reviewing in detail data on PD-L1 expression and its regulation. In addition, opportunities to boost anti-tumor immunity in breast cancer with checkpoint inhibitor-based immunotherapies alone and in combination with other treatment options will be discussed.

1.
Schumacher TN, Schreiber RD: Neoantigens in cancer immunotherapy. Science 2015;348:69-74.
2.
Galon J, Angell Helen K, et al.: The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 2013;39:11-26.
3.
Wang E, Bedognetti D, Tomei S, Marincola FM: Common pathways to tumor rejection. Ann N Y Acad Sci 2013;1284:75-79.
4.
Ceeraz S, Nowak EC, Noelle RJ: B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 2013;34:556-563.
5.
Chen L, Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13:227-242.
6.
Jung K, Choi I: Emerging co-signaling networks in T cell immune regulation. Immune Netw 2013;13:184-193.
7.
Maj T, Wei S, Welling T, Zou W: T cells and costimulation in cancer. Cancer J 2013;19:473-482.
8.
Sanmamed MF, Pastor F, Rodriguez A, et al.: Agonists of co-stimulation in cancer immunotherapy directed against CD137, OX40, GITR, CD27, CD28, and ICOS. Semin Oncol 2015;42:640-655.
9.
Robert C, Long GV, Brady B, et al.: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320-330.
10.
Hodi FS, O'Day SJ, McDermott DF, et al.: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711-723.
11.
Topalian SL, Drake CG, Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 2012;24:207-212.
12.
Bracarda S, Altavilla A, Hamzaj A, et al.: Immunologic checkpoints blockade in renal cell, prostate, and urothelial malignancies. Semin Oncol 2015;42:495-505.
13.
Rizvi NA, Hellmann MD, Snyder A, et al.: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124-128.
14.
Le DT, Uram JN, Wang H, et al.: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520.
15.
Ojalvo LS, Nichols PE, Jelovac D, Emens LA: Emerging immunotherapies in ovarian cancer. Discov Med 2015;20:97-109.
16.
Shah MA: Update on metastatic gastric and esophageal cancers. J Clin Oncol 2015;33:1760-1769.
17.
Nanda R, Chow LQ, Dees EC, et al.: A phase Ib study of pembrolizumab (MK-3475) in patients with advanced triple-negative breast cancer. Cancer Res 2015;75:abstr S1-09.
18.
Emens LA, Braiteh FB, Cassier P, et al.: Inhibition of PD-L1 by MPDL3280A leads to clinical activity in patients with metastatic triple negative breast cancer. Cancer Res 2015;75:abstr PD1-6.
19.
Walunas TL, Lenschow DJ, Bakker CY, et al.: CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405-413.
20.
Krummel MF, Allison JP: CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 1996;183:2533-2540.
21.
Egen JG, Allison JP: Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002;16:23-35.
22.
Takahashi T, Tagami T, Yamazaki S, et al.: Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192:303-310.
23.
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252-264.
24.
Yu H, Yang J, Jiao S, et al.: Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol Immunother 2015;64:853-860.
25.
Ward FJ, Dahal LN, Wijesekera SK, et al.: The soluble isoform of CTLA-4 as a regulator of T-cell responses. Eur J Immunol 2013;43:1274-1285.
26.
Laurent S, Queirolo P, Boero S, et al.: The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-alpha production. J Transl Med 2013;11:108.
27.
Lynch TJ, Bondarenko I, Luft A, et al.: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol 2012;30:2046-2054.
28.
Fife BT, Pauken KE, Eagar TN, et al.: Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009;10:1185-1192.
29.
Francisco LM, Salinas VH, Brown KE, et al.: PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-3029.
30.
Latchman Y, Wood CR, Chernova T, et al.: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-268.
31.
Sponaas AM, Moharrami NN, Feyzi E, et al.: PDL1 Expression on plasma and dendritic cells in myeloma bone marrow suggests benefit of targeted anti PD1-PDL1 therapy. PLoS One 2015;10:e0139867.
32.
Anagnostou VK, Brahmer JR: Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer. Clin Cancer Res 2015;21:976-984.
33.
Adachi K, Tamada K: Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy. Cancer Sci 2015;106:945-950.
34.
Melero I, Grimaldi AM, Perez-Gracia JL, Ascierto PA: Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res 2013;19:997-1008.
35.
Taube JM, Klein A, Brahmer JR, et al.: Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014;20:5064-5074.
36.
Bedognetti D, Hendrickx W, Marincola FM, Miller LD: Prognostic and predictive immune gene signatures in breast cancer. Curr Opin Oncol 2015;27:433-444.
37.
Ansell SM, Lesokhin AM, Borrello I, et al.: PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015;372:311-319.
38.
Barrett MT, Anderson KS, Lenkiewicz E, et al.: Genomic amplification of 9p24.1 targeting JAK2, PD-L1, and PD-L2 is enriched in high-risk triple negative breast cancer. Oncotarget 2015;6:26483-26493.
39.
Sabatier R, Finetti P, Mamessier E, et al.: Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget 2015;6:5449-5464.
40.
Ali HR, Glont SE, Blows FM, et al.: PD-L1 protein expression in breast cancer is rare, enriched in basal-like tumours and associated with infiltrating lymphocytes. Ann Oncol 2015;26:1488-1493.
41.
Rooney MS, Shukla SA, Wu CJ, et al.: Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48-61.
42.
Lastwika KJ, Wilson W 3rd, Li QK, et al.: Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res 2016;76:227-238.
43.
Mittendorf EA, Philips AV, Meric-Bernstam F, et al.: PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2014;2:361-370.
44.
Zhang P, Su DM, Liang M, Fu J: Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol 2008;45:1470-1476.
45.
Ghebeh H, Lehe C, Barhoush E, et al.: Doxorubicin downregulates cell surface B7-H1 expression and upregulates its nuclear expression in breast cancer cells: role of B7-H1 as an anti-apoptotic molecule. Breast Cancer Res 2010;12:R48.
46.
Teng MW, Ngiow SF, Ribas A, Smyth MJ: Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 2015;75:2139-2145.
47.
Wu P, Wu D, Li L, et al.: PD-L1 and survival in solid tumors: a meta-analysis. PLoS One 2015;10:e0131403.
48.
Gatalica Z, Snyder C, Maney T, et al.: Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type. Cancer Epidemiol Biomarkers Prev 2014;23:2965-2970.
49.
Ghebeh H, Mohammed S, Al-Omair A, et al.: The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 2006;8:190-198.
50.
Cimino-Mathews A, Thompson E, Taube JM, et al.: PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum Pathol 2016;47:52-63.
51.
Muenst S, Schaerli AR, Gao F, et al.: Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 2014;146:15-24.
52.
Beckers RK, Selinger CI, Vilain R, et al.: PDL1 expression in triple-negative breast cancer is associated with tumour-infiltrating lymphocytes and improved outcome. Histopathology 2015;Epub ahead of print.
53.
Schalper KA, Velcheti V, Carvajal D, et al.: In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res 2014;20:2773-2782.
54.
Bertucci F, Finetti P, Colpaert C, et al.: PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget 2015;6:13506-13519.
55.
Qin T, Zeng YD, Qin G, et al.: High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget 2015;6:33972-33981.
56.
Baptista MZ, Sarian LO, Derchain SF, et al.: Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum Pathol 2016;47:78-84.
57.
Park IH, Kong SY, Ro JY, et al.: Prognostic implications of tumor-infiltrating lymphocytes in association with Programmed Death Ligand 1 Expression in early-stage breast cancer. Clin Breast Cancer 2016;16:51-58.
58.
Yuan J, Hegde PS, Clynes R, et al.: Novel technologies and emerging biomarkers for personalized cancer immunotherapy. J Immunother Cancer 2016;4:3.
59.
Bedognetti D, Balwit JM, Wang E, et al.: SITC/iSBTc Cancer Immunotherapy Biomarkers Resource Document: online resources and useful tools - a compass in the land of biomarker discovery. J Transl Med 2011;9:155.
60.
Ghebeh H, Tulbah A, Mohammed S, et al.: Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 2007;121:751-758.
61.
Mazel M, Jacot W, Pantel K, et al.: Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 2015;9:1773-1782.
62.
Bedognetti D, Spivey TL, Zhao Y, et al.: CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 2013;109:2412-2423.
63.
Herbst RS, Soria JC, Kowanetz M, et al.: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014;515:563-567.
64.
Ji RR, Chasalow SD, Wang L, et al.: An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 2012;61:1019-1031.
65.
Ulloa-Montoya F, Louahed J, Dizier B, et al.: Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J Clin Oncol 2013;31:2388-2395.
66.
Spivey TL, De Giorgi V, Zhao Y, et al.: The stable traits of melanoma genetics: an alternate approach to target discovery. BMC Genomics 2012;13:156.
67.
Spivey TL, Uccellini L, Ascierto ML, et al.: Gene expression profiling in acute allograft rejection: challenging the immunologic constant of rejection hypothesis. J Transl Med 2011;9:174.
68.
Bedognetti D, Wang E, Sertoli MR, Marincola FM: Gene-expression profiling in vaccine therapy and immunotherapy for cancer. Expert Rev Vaccines 2010;9:555-565.
69.
Wang E, Bedognetti D, Marincola FM: Prediction of response to anticancer immunotherapy using gene signatures. J Clin Oncol 2013;31:2369-2371.
70.
Murtas D, Maric D, De Giorgi V, et al.: IRF-1 responsiveness to IFN-gamma predicts different cancer immune phenotypes. Br J Cancer 2013;109:76-82.
71.
Tomei S, Bedognetti D, De Giorgi V, et al.: The immune-related role of BRAF in melanoma. Mol Oncol 2015;9:93-104.
72.
Stoll G, Enot D, Mlecnik B, et al.: Immune-related gene signatures predict the outcome of neoadjuvant chemotherapy. Oncoimmunology 2014;3:e27884.
73.
Bedognetti D, Wang E, Marincola FM: Meta-analysis and metagenes: CXCL-13-driven signature as a robust marker of intratumoral immune response and predictor of breast cancer chemotherapeutic outcome. Oncoimmunology 2014;3:e28727.
74.
Denkert C, von Minckwitz G, Brase JC, et al.: Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 2015;33:983-991.
75.
Lee HJ, Lee JJ, Song IH, et al.: Prognostic and predictive value of NanoString-based immune-related gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to tumor-infiltrating lymphocytes. Breast Cancer Res Treat 2015;151:619-627.
76.
Ignatiadis M, Singhal SK, Desmedt C, et al.: Gene modules and response to neoadjuvant chemotherapy in breast cancer subtypes: a pooled analysis. J Clin Oncol 2012;30:1996-2004.
77.
Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, et al.: Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol 2014;27:89-97.
78.
Miller LD, Chou JW, Black MA, et al.: Immune gene signatures and tumor intrinsic markers delineate novel immunogenic subtypes of breast cancer. J Immunother Cancer 2014;2(suppl 3):P256.
79.
Nagalla S, Chou JW, Willingham MC, et al.: Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol 2013;14:R34.
80.
Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013;39:74-88.
81.
Perez EA, Thompson EA, Ballman KV, et al.: Genomic analysis reveals that immune function genes are strongly linked to clinical outcome in the North Central Cancer Treatment Group n9831 Adjuvant Trastuzumab Trial. J Clin Oncol 2015;33:701-708.
82.
Bedognetti D, Tomei S, Hendrickx W, et al.: Toward the identification of genetic determinants of responsiveness to cancer immunotherapy; in Ascierto PA, Stroncek DF, Wang E (eds): Developments in T Cell Based Cancer Immunotherapies. New York, NY, Humana Press, 2015.
83.
Garon EB, Rizvi NA, Hui R, et al.: Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015;372:2018-2028.
84.
Snyder A, Makarov V, Merghoub T, et al.: Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189-2199.
85.
Emens LA, Tuohy VK, Stanton SE: Immunotherapy for breast cancer: is it feasible? Immunotherapy 2015;7:1135-1143.
86.
Emens LA: Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther 2012;12:1597-1611.
87.
Rosenberg SA, Yang JC, Sherry RM, et al.: Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 2011;17:4550-4557.
88.
Tomei S, Wang E, Delogu LG, et al.: Non-BRAF-targeted therapy, immunotherapy, and combination therapy for melanoma. Expert Opin Biol Ther 2014;14:663-686.
89.
Hinrichs CS, Rosenberg SA: Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 2014;257:56-71.
90.
Domschke C, Ge Y, Bernhardt I, et al.: Long-term survival after adoptive bone marrow T cell therapy of advanced metastasized breast cancer: follow-up analysis of a clinical pilot trial. Cancer Immunol Immunother 2013;62:1053-1060.
91.
Stefanovic S, Schuetz F, Sohn C, et al.: Adoptive immunotherapy of metastatic breast cancer: present and future. Cancer Metastasis Rev 2014;33:309-320.
92.
Vonderheide RH, LoRusso PM, Khalil M, et al.: Tremelimumab in combination with exemestane in patients with advanced breast cancer and treatment-associated modulation of inducible costimulator expression on patient T cells. Clin Cancer Res 2010;16:3485-3494.
93.
Page DB, Diab A, Yuan J, et al.: Pre-operative immunotherapy with tumor cryoablation (cryo) plus ipilimumab (ipi) induces potentially favorable systemic and intratumoral immune effects in early stage breast cancer (ESBC) patients. J Immunother Cancer 2015;3:P1.
94.
Savas P, Salgado R, Denkert C, et al.: Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 2015;Epub ahead of print.
95.
Salgado R, Denkert C, Demaria S, et al.: The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 2015;26:259-271.
96.
Larkin J, Chiarion-Sileni V, Gonzalez R, et al.: Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:23-34.
97.
Spranger S, Bao R, Gajewski TF: Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 2015;523:231-235.
98.
Loi S, Dushyanthen S, Beavis PA, et al.: RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 2015; Epub ahead of print.
99.
Simeone I, Hendricks W, Miller L, et al.: Toward the identification of genetic determinants of breast cancer immune responsiveness. Breast Cancer Immunotherapy Symposium (BRECIS): Sidra Symposia Series, April 13-14, Doha, Qatar 2015 (JITC suppl in press).
100.
Bruns M, Wanger J, Utermohlen O, Deppert W: An inducible transgenic mouse breast cancer model for the analysis of tumor antigen specific CD8+ T-cell responses. Oncotarget 2015;6:38487-38503.
101.
Formenti SC, Demaria S: Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013;105:256-265.
102.
Vanpouille-Box C, Diamond JM, Pilones KA, et al.: TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 2015;75:2232-2242.
103.
Gao J, Aksoy BA, Dogrusoz U, et al.: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:pl1.
You do not currently have access to this content.