Introduction: Hypotension is common during intermittent hemodialysis (IHD) and may be due to a decreased cardiac index (CI). However, no study has simultaneously and continuously measured CI and mean arterial pressure (MAP) to understand the prevalence, severity, and duration of CI decreases or relate them to MAP, blood volume (BV), and net ultrafiltration (NUF) rate. Methods: In a prospective, pilot and feasibility investigation, we studied 10 chronic IHD patients. We used the ClearSight System to continuously monitor CI and MAP; the CRIT-LINE®IV monitor to detect BV changes and collected data on NUF rate. Results: Device tolerance and compliance were 100%. All patients experienced at least ≥1 episode of severe CI decrease (>25% from baseline), with a median duration of 24 min (IQR 6–87) and of 68 min [14–106] for moderate decreases (>15% but ≤25% from baseline). Eight patients experienced a low CI state (<2.2 L/min/m2). The lowest CI was 0.9 L/min/m2 with a concomitant MAP of 94 mm Hg. When the fall in CI was severe, MAP increased in 58% of cases and remained stable in 28%. Overall, CI decreased by −0.55 L/min/m2 when BV decrease was moderate versus mild (p < 0.001) and by −0.8 L/min/m2 when NUF rate was high versus low (p < 0.001). Conclusion: Continuous CI monitoring is feasible in IHD and shows frequent moderate-severe CI decreases, sometimes to low CI state levels. Such decreases are typically associated with markers of decreased intravascular volume status but not with a decrease in MAP, implying marked vasoconstriction.

1.
Lv
JC
,
Zhang
LX
.
Prevalence and disease burden of chronic kidney disease
.
Adv Exp Med Biol
.
2019
;
1165
:
3
15
.
2.
Wanner
C
,
Amann
K
,
Shoji
T
.
The heart and vascular system in dialysis
.
Lancet
.
2016
;
388
(
10041
):
276
84
.
3.
Johansen
KL
,
Chertow
GM
,
Gilbertson
DT
,
Ishani
A
,
Israni
A
,
Ku
E
, et al
.
US renal data system 2022 annual data report: epidemiology of kidney disease in the United States
.
Am J Kidney Dis
.
2023
;
81
(
3 Suppl 1
):
A8
11
.
4.
de Jager
DJ
,
Grootendorst
DC
,
Jager
KJ
,
van Dijk
PC
,
Tomas
LM
,
Ansell
D
, et al
.
Cardiovascular and noncardiovascular mortality among patients starting dialysis
.
JAMA
.
2009
;
302
(
16
):
1782
9
.
5.
Polinder-Bos
HA
,
Elting
JWJ
,
Aries
MJ
,
Garcia
DV
,
Willemsen
AT
,
van Laar
PJ
, et al
.
Changes in cerebral oxygenation and cerebral blood flow during hemodialysis: a simultaneous near-infrared spectroscopy and positron emission tomography study
.
J Cereb Blood Flow Metab
.
2020
;
40
(
2
):
328
40
.
6.
Anazodo
UC
,
Wong
DY
,
Theberge
J
,
Dacey
M
,
Gomes
J
,
Penny
JD
, et al
.
Hemodialysis-related acute brain injury demonstrated by application of intradialytic magnetic resonance imaging and spectroscopy
.
J Am Soc Nephrol
.
2023
;
34
(
6
):
1090
104
.
7.
Baldamus
CA
,
Ernst
W
,
Frei
U
,
Koch
KM
.
Sympathetic and hemodynamic response to volume removal during different forms of renal replacement therapy
.
Nephron
.
1982
;
31
(
4
):
324
32
.
8.
Wehle
B
,
Asaba
H
,
Castenfors
J
,
Furst
P
,
Gunnarsson
B
,
Shaldon
S
, et al
.
Hemodynamic changes during sequential ultrafiltration and dialysis
.
Kidney Int
.
1979
;
15
(
4
):
411
8
.
9.
Daugirdas
JT
.
Pathophysiology of dialysis hypotension: an update
.
Am J Kidney Dis
.
2001
;
38
(
4 Suppl 4
):
S11
7
.
10.
Spano
S
,
Maeda
A
,
Lam
J
,
Chaba
A
,
See
E
,
Mount
P
, et al
.
Cardiac output changes during renal replacement therapy: a scoping review
.
Blood Purif
.
2024
;
53
(
3
):
151
61
.
11.
Magder
S
.
The meaning of blood pressure
.
Crit Care
.
2018
;
22
(
1
):
257
.
12.
Guyton
AC
.
The relationship of cardiac output and arterial pressure control
.
Circulation
.
1981
;
64
(
6
):
1079
88
.
13.
Hofhuizen
C
,
Lansdorp
B
,
van der Hoeven
JG
,
Scheffer
GJ
,
Lemson
J
.
Validation of noninvasive pulse contour cardiac output using finger arterial pressure in cardiac surgery patients requiring fluid therapy
.
J Crit Care
.
2014
;
29
(
1
):
161
5
.
14.
Chen
G
,
Meng
L
,
Alexander
B
,
Tran
NP
,
Kain
ZN
,
Cannesson
M
.
Comparison of noninvasive cardiac output measurements using the Nexfin monitoring device and the esophageal Doppler
.
J Clin Anesth
.
2012
;
24
(
4
):
275
83
.
15.
Helmer
P
,
Helf
D
,
Sammeth
M
,
Winkler
B
,
Hottenrott
S
,
Meybohm
P
, et al
.
The use of non-invasive continuous blood pressure measuring (ClearSight®) during central neuraxial anaesthesia for caesarean section-A retrospective validation study
.
J Clin Med
.
2022
;
11
(
15
):
4498
.
16.
Boisson
M
,
Poignard
ME
,
Pontier
B
,
Mimoz
O
,
Debaene
B
,
Frasca
D
.
Cardiac output monitoring with thermodilution pulse-contour analysis vs. non-invasive pulse-contour analysis
.
Anaesthesia
.
2019
;
74
(
6
):
735
40
.
17.
Winkler
RE
,
Patow
W
,
Ahrenholz
P
.
Blood volume monitoring
.
Contrib Nephrol
.
2008
;
161
:
119
24
.
18.
Zschatzsch
S
,
Stauss-Grabo
M
,
Gauly
A
,
Braun
J
.
Integrating monitoring of volume status and blood volume-controlled ultrafiltration into extracorporeal kidney replacement therapy
.
Int J Nephrol Renovasc Dis
.
2021
;
14
:
349
58
.
19.
Paolini
F
,
Mancini
E
,
Bosetto
A
,
Santoro
A
.
Hemoscan: a dialysis machine-integrated blood volume monitor
.
Int J Artif Organs
.
1995
;
18
(
9
):
487
94
.
20.
Broch
O
,
Renner
J
,
Gruenewald
M
,
Meybohm
P
,
Schottler
J
,
Caliebe
A
, et al
.
A comparison of the Nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery
.
Anaesthesia
.
2012
;
67
(
4
):
377
83
.
21.
Martina
JR
,
Westerhof
BE
,
Van Goudoever
J
,
De Jonge
N
,
Van Lieshout
JJ
,
Lahpor
JR
, et al
.
Noninvasive blood pressure measurement by the Nexfin monitor during reduced arterial pulsatility: a feasibility study
.
ASAIO J
.
2010
;
56
(
3
):
221
7
.
22.
Martina
JR
,
Westerhof
BE
,
van Goudoever
J
,
de Beaumont
EM
,
Truijen
J
,
Kim
YS
, et al
.
Noninvasive continuous arterial blood pressure monitoring with Nexfin®
.
Anesthesiology
.
2012
;
116
(
5
):
1092
103
.
23.
Misugi
T
,
Juri
T
,
Suehiro
K
,
Kitada
K
,
Kurihara
Y
,
Tahara
M
, et al
.
Non-invasive continuous blood pressure monitoring using the ClearSight system for pregnant women at high risks of post-partum hemorrhage: comparison with invasive blood pressure monitoring during cesarean section
.
Obstet Gynecol Sci
.
2022
;
65
(
4
):
325
34
.
24.
Baldwin
I
,
Maeda
A
,
Bellomo
R
,
See
E
.
Haematocrit monitoring and blood volume estimation during continuous renal replacement therapy
.
Aust Crit Care
.
2024
;
37
(
4
):
632
7
.
25.
Monnet
X
,
Shi
R
,
Teboul
JL
.
Prediction of fluid responsiveness. What’s new
.
Ann Intensive Care
.
2022
;
12
(
1
):
46
.
26.
Messina
A
,
Calabro
L
,
Pugliese
L
,
Lulja
A
,
Sopuch
A
,
Rosalba
D
, et al
.
Fluid challenge in critically ill patients receiving haemodynamic monitoring: a systematic review and comparison of two decades
.
Crit Care
.
2022
;
26
(
1
):
186
.
27.
Furer
A
,
Wessler
J
,
Burkhoff
D
.
Hemodynamics of cardiogenic shock
.
Interv Cardiol Clin
.
2017
;
6
(
3
):
359
71
.
28.
VanDyck
TJ
,
Pinsky
MR
.
Hemodynamic monitoring in cardiogenic shock
.
Curr Opin Crit Care
.
2021
;
27
(
4
):
454
9
.
29.
Hill
LK
,
Sollers Iii
JJ
,
Thayer
JF
.
Resistance reconstructed estimation of total peripheral resistance from computationally derived cardiac output - biomed 2013
.
Biomed Sci Instrum
.
2013
;
49
:
216
23
.
30.
Trammel
JE
,
Sapra
A
.
Physiology, systemic vascular resistance
.
Treasure Island (FL)
:
StatPearls
;
2024
.
31.
Rodriguez
HJ
,
Domenici
R
,
Diroll
A
,
Goykhman
I
.
Assessment of dry weight by monitoring changes in blood volume during hemodialysis using Crit-Line
.
Kidney Int
.
2005
;
68
(
2
):
854
61
.
32.
Murugan
R
.
Solute and volume dosing during kidney replacement therapy in critically ill patients with acute kidney injury
.
Indian J Crit Care Med
.
2020
;
24
(
Suppl 3
):
S107
11
.
33.
Wickham
H
.
ggplot2: elegant graphics for data analysis
.
New York
:
Springer-Verlag
;
2016
.
34.
Patil
I
.
Visualizations with statistical details: the “ggstatsplot” approach
.
J Open Source Softw
.
2021
;
6
(
61
):
3167
.
35.
Lai
C-J
,
Shih
C-C
,
Huang
H-H
,
Chien
M-H
,
Wu
M-S
,
Cheng
Y-J
.
Detecting volemic, cardiac, and autonomic responses from hypervolemia to normovolemia via non-invasive ClearSight hemodynamic monitoring during hemodialysis: an observational investigation
.
Front Physiol
.
2022
;
13
:
775631
.
36.
Sarma
D
,
Jentzer
JC
.
Cardiogenic shock: pathogenesis, classification, and management
.
Crit Care Clin
.
2024
;
40
(
1
):
37
56
.
37.
Kosaraju
A
,
Pendela
VS
,
Hai
O
.
Cardiogenic shock
.
Treasure Island (FL)
:
StatPearls
;
2024
.
38.
Amore
A
,
Coppo
R
.
Immunological basis of inflammation in dialysis
.
Nephrol Dial Transplant
.
2002
;
17
(
Suppl 8
):
16
24
.
39.
Montgomery
LD
,
Montgomery
RW
,
Gerth
WA
,
Lew
SQ
,
Klein
MD
,
Stewart
JM
, et al
.
Bioimpedance monitoring of cellular hydration during hemodialysis therapy
.
Hemodial Int
.
2017
;
21
(
4
):
575
84
.
40.
Breidthardt
T
,
Burton
JO
,
Odudu
A
,
Eldehni
MT
,
Jefferies
HJ
,
McIntyre
CW
.
Troponin T for the detection of dialysis-induced myocardial stunning in hemodialysis patients
.
Clin J Am Soc Nephrol
.
2012
;
7
(
8
):
1285
92
.
You do not currently have access to this content.