Background: Generative artificial intelligence (AI) is rapidly transforming various aspects of healthcare, including critical care nephrology. Large language models (LLMs), a key technology in generative AI, show promise in enhancing patient care, streamlining workflows, and advancing research in this field. Summary: This review analyzes the current applications and future prospects of generative AI in critical care nephrology. Recent studies demonstrate the capabilities of LLMs in diagnostic accuracy, clinical reasoning, and continuous renal replacement therapy (CRRT) alarm troubleshooting. As we enter an era of multiagent models and automation, the integration of generative AI into critical care nephrology holds promise for improving patient care, optimizing clinical processes, and accelerating research. However, careful consideration of ethical implications and continued refinement of these technologies are essential for their responsible implementation in clinical practice. This review explores the current and potential applications of generative AI in nephrology, focusing on clinical decision support, patient education, research, and medical education. Additionally, we examine the challenges and limitations of AI implementation, such as privacy concerns, potential bias, and the necessity for human oversight. Key Messages: (i) LLMs have shown potential in enhancing diagnostic accuracy, clinical reasoning, and CRRT alarm troubleshooting in critical care nephrology. (ii) Generative AI offers promising applications in patient education, literature review, and academic writing within the field of nephrology. (iii) The integration of AI into electronic health records and clinical workflows presents both opportunities and challenges for improving patient care and research. (iv) Addressing ethical concerns, ensuring data privacy, and maintaining human oversight are crucial for the responsible implementation of AI in critical care nephrology.

1.
Howell
MD
,
Corrado
GS
,
DeSalvo
KB
.
Three epochs of artificial intelligence in health care
.
JAMA
.
2024
;
331
(
3
):
242
4
.
2.
Moulaei
K
,
Yadegari
A
,
Baharestani
M
,
Farzanbakhsh
S
,
Sabet
B
,
Reza Afrash
M
.
Generative artificial intelligence in healthcare: a scoping review on benefits, challenges and applications
.
Int J Med Inform
.
2024
;
188
:
105474
.
3.
Shah
NH
,
Entwistle
D
,
Pfeffer
MA
.
Creation and adoption of large language models in medicine
.
JAMA
.
2023
;
330
(
9
):
866
9
.
4.
Cheungpasitporn
W
,
Thongprayoon
C
,
Kashani
KB
.
Artificial intelligence in heart failure and acute kidney injury: emerging concepts and controversial dimensions
.
Cardiorenal Med
.
2024
;
14
(
1
):
147
59
.
5.
Suppadungsuk
S
,
Thongprayoon
C
,
Miao
J
,
Krisanapan
P
,
Qureshi
F
,
Kashani
K
, et al
.
Exploring the potential of chatbots in critical care nephrology
.
Medicines
.
2023
;
10
(
10
):
58
.
6.
Fayos De Arizón
L
,
Viera
ER
,
Pilco
M
,
Perera
A
,
De Maeztu
G
,
Nicolau
A
, et al
.
Artificial intelligence: a new field of knowledge for nephrologists
.
Clin Kidney J
.
2023
;
16
(
12
):
2314
26
.
7.
Gertz
RJ
,
Dratsch
T
,
Bunck
AC
,
Lennartz
S
,
Iuga
AI
,
Hellmich
MG
, et al
.
Potential of GPT-4 for detecting errors in radiology reports: implications for reporting accuracy
.
Radiology
.
2024
;
311
(
1
):
e232714
.
8.
Tu
T
,
Palepu
A
,
Schaekermann
M
,
Saab
K
,
Freyberg
J
,
Tanno
R
, et al
.
Towards conversational diagnostic ai
.
arXiv
.
2024
:
240105654
. preprint arXiv.
9.
Williams
CYK
,
Zack
T
,
Miao
BY
,
Sushil
M
,
Wang
M
,
Kornblith
AE
, et al
.
Use of a large language model to assess clinical acuity of adults in the emergency department
.
JAMA Netw Open
.
2024
;
7
(
5
):
e248895
.
10.
Miao
J
,
Thongprayoon
C
,
Garcia Valencia
OA
,
Krisanapan
P
,
Sheikh
MS
,
Davis
PW
, et al
.
Performance of ChatGPT on nephrology test questions
.
Clin J Am Soc Nephrol
.
2024
;
19
(
1
):
35
43
.
11.
Cabral
S
,
Restrepo
D
,
Kanjee
Z
,
Wilson
P
,
Crowe
B
,
Abdulnour
RE
, et al
.
Clinical reasoning of a generative artificial intelligence model compared with physicians
.
JAMA Intern Med
.
2024
;
184
(
5
):
581
3
.
12.
Sheikh
MS
,
Thongprayoon
C
,
Qureshi
F
,
Suppadungsuk
S
,
Kashani
KB
,
Miao
J
, et al
.
Personalized medicine transformed: ChatGPT’s contribution to continuous renal replacement therapy alarm management in intensive care units
.
J Pers Med
.
2024
;
14
(
3
):
233
.
13.
Hunter
JS
.
Enhancing Friedman’s “fundamental theorem of biomedical informatics”
.
J Am Med Inform Assoc
.
2010
;
17
(
1
):
112
3
; author reply 112–3.
14.
Garcia Valencia
OA
,
Thongprayoon
C
,
Miao
J
,
Suppadungsuk
S
,
Krisanapan
P
,
Craici
IM
, et al
.
Empowering inclusivity: improving readability of living kidney donation information with ChatGPT
.
Front Digit Health
.
2024
;
6
:
1366967
.
15.
Garcia Valencia
OA
,
Thongprayoon
C
,
Jadlowiec
CC
,
Mao
SA
,
Leeaphorn
N
,
Budhiraja
P
, et al
.
AI-driven translations for kidney transplant equity in Hispanic populations
.
Sci Rep
.
2024
;
14
(
1
):
8511
.
16.
Sheikh
MS
,
Thongprayoon
C
,
Suppadungsuk
S
,
Miao
J
,
Qureshi
F
,
Kashani
K
, et al
.
Evaluating ChatGPT’s accuracy in responding to patient education questions on acute kidney injury and continuous renal replacement therapy
.
Blood Purif
.
2024
;
53
(
9
):
725
31
.
17.
Eppler
M
,
Ganjavi
C
,
Ramacciotti
LS
,
Piazza
P
,
Rodler
S
,
Checcucci
E
, et al
.
Awareness and use of ChatGPT and large Language Models: a prospective cross-sectional global survey in urology
.
Eur Urol
.
2024
;
85
(
2
):
146
53
.
18.
Miao
J
,
Thongprayoon
C
,
Suppadungsuk
S
,
Garcia Valencia
OA
,
Qureshi
F
,
Cheungpasitporn
W
.
Innovating personalized nephrology care: exploring the potential utilization of ChatGPT
.
J Pers Med
.
2023
;
13
(
12
):
1681
.
19.
Suppadungsuk
S
,
Thongprayoon
C
,
Krisanapan
P
,
Tangpanithandee
S
,
Garcia Valencia
O
,
Miao
J
, et al
.
Examining the validity of ChatGPT in identifying relevant nephrology literature: findings and implications
.
J Clin Med
.
2023
;
12
(
17
):
5550
.
20.
Aiumtrakul
N
,
Thongprayoon
C
,
Suppadungsuk
S
,
Krisanapan
P
,
Miao
J
,
Qureshi
F
, et al
.
Navigating the landscape of personalized medicine: the relevance of ChatGPT, BingChat, and bard AI in nephrology literature searches
.
J Pers Med
.
2023
;
13
(
10
):
1457
.
21.
Miao
J
,
Thongprayoon
C
,
Craici
IM
,
Cheungpasitporn
W
.
How to improve ChatGPT performance for nephrologists: a technique guide
.
J Nephrol
.
2024
.
22.
Hake
J
,
Crowley
M
,
Coy
A
,
Shanks
D
,
Eoff
A
,
Kirmer-Voss
K
, et al
.
Quality, accuracy, and bias in ChatGPT-based summarization of medical abstracts
.
Ann Fam Med
.
2024
;
22
(
2
):
113
20
.
23.
Ganjavi
C
,
Eppler
MB
,
Pekcan
A
,
Biedermann
B
,
Abreu
A
,
Collins
GS
, et al
.
Publishers’ and journals’ instructions to authors on use of generative artificial intelligence in academic and scientific publishing: bibliometric analysis
.
BMJ
.
2024
;
384
:
e077192
.
24.
Bockting
CL
,
van Dis
EAM
,
van Rooij
R
,
Zuidema
W
,
Bollen
J
.
Living guidelines for generative AI: why scientists must oversee its use
.
Nature
.
2023
;
622
(
7984
):
693
6
.
25.
Bates
T
,
Anić
A
,
Marušić
M
,
Marušić
A
.
Authorship criteria and disclosure of contributions: comparison of 3 general medical journals with different author contribution forms
.
JAMA
.
2004
;
292
(
1
):
86
8
.
26.
Kousha
K
,
Thelwall
M
.
Artificial intelligence to support publishing and peer review: a summary and review
.
Learned Publishing
.
2024
;
37
(
1
):
4
12
.
27.
Miao
J
,
Thongprayoon
C
,
Suppadungsuk
S
,
Garcia Valencia
OA
,
Qureshi
F
,
Cheungpasitporn
W
.
Ethical dilemmas in using AI for academic writing and an example framework for peer review in nephrology academia: a narrative review
.
Clin Pract
.
2023
;
14
(
1
):
89
105
.
28.
Cheng
K
,
Sun
Z
,
Liu
X
,
Wu
H
,
Li
C
.
Generative artificial intelligence is infiltrating peer review process
.
Crit Care
.
2024
;
28
(
1
):
149
.
29.
Miao
J
,
Thongprayoon
C
,
Cheungpasitporn
W
,
Cornell
LD
.
Reply to “Performance of GPT-4 Vision on kidney pathology exam questions”
.
Am J Clin Pathol
.
2024
:
aqae059
.
30.
Yang
L
,
Xu
S
,
Sellergren
A
,
Kohlberger
T
,
Zhou
Y
,
Ktena
I
, et al
.
Advancing multimodal medical capabilities of gemini
.
arXiv
.
2024
:
240503162
. preprint arXiv.
31.
Miao
J
,
Thongprayoon
C
,
Cheungpasitporn
W
.
Should artificial intelligence Be used for physician documentation to reduce burnout
.
Kidney360
.
2024
;
5
(
5
):
765
7
.
32.
Miao
J
,
Thongprayoon
C
,
Suppadungsuk
S
,
Garcia Valencia
OA
,
Cheungpasitporn
W
.
Integrating retrieval-augmented generation with large language models in nephrology: advancing practical applications
.
Medicina
.
2024
;
60
(
3
):
445
.
33.
Hiatt
J
.
ADKAR: a model for change in business, government and our community
. 1st ed.
Loveland, Colorado, USA
:
Prosci Learning Center Publications
;
2006
; p.
146
.
34.
Hoste
EA
,
Kashani
K
,
Gibney
N
,
Wilson
FP
,
Ronco
C
,
Goldstein
SL
, et al
.
Impact of electronic-alerting of acute kidney injury: workgroup statements from the 15(th) ADQI Consensus Conference
.
Can J Kidney Health Dis
.
2016
;
3
(
1
):
10
.
35.
Palaniappan
K
,
Lin
EYT
,
Vogel
S
, et al
.
Global regulatory frameworks for the use of artificial intelligence (AI) in the healthcare services sector
.
Healthcare
.
2024
;
12
(
5
):
562
.
36.
Joshi
G
,
Jain
A
,
Araveeti
SR
,
Adhikari
S
,
Garg
H
,
Bhandari
M
.
FDA-approved artificial intelligence and machine learning (AI/ML)-enabled medical devices: an updated landscape
.
Electronics
.
2024
;
13
(
3
):
498
.
37.
Madiega
T
.
Artificial intelligence act
.
European Parliament: European Parliamentary Research Service
.
2021
.
38.
Soranno
DE
,
Bihorac
A
,
Goldstein
SL
,
Kashani
KB
,
Menon
S
,
Nadkarni
GN
, et al
.
Artificial Intelligence for AKI! Now: let’s not await Plato’s utopian republic
.
Kidney360
.
2022
;
3
(
2
):
376
81
.
39.
Garcia Valencia
OA
,
Suppadungsuk
S
,
Thongprayoon
C
,
Miao
J
,
Tangpanithandee
S
,
Craici
IM
, et al
.
Ethical implications of chatbot utilization in nephrology
.
J Pers Med
.
2023
;
13
(
9
):
1363
.
40.
Swanson
K
,
Liu
G
,
Catacutan
DB
,
Arnold
A
,
Zou
J
,
Stokes
JM
.
Generative AI for designing and validating easily synthesizable and structurally novel antibiotics
.
Nat Mach Intell
.
2024
;
6
(
3
):
338
53
.
41.
Sarkar
U
,
Bates
DW
.
Using artificial intelligence to improve primary care for patients and clinicians
.
JAMA Intern Med
.
2024
;
184
(
4
):
343
4
.
You do not currently have access to this content.