Progress in the identification and characterization of uremic retention solutes has refined our understanding of the pathophysiology of the uremic syndrome. Furthermore, the evolution of dialysis and other techniques designed to remove uremic retention solutes offers opportunities to provide a more personalized and targeted treatment for patients with chronic kidney disease (CKD) with an aim to improve outcomes. Considering these developments, a consensus report was recently published that readdressed the 2003 definition and classification of uremic toxins and formulated recommendations for future research to enhance the understanding of uremic retention solutes. In the present work, the authors of a work group that contributed to the consensus report provide a more detailed rationale for the recommendations related to their theme “Critical appraisal of limitations in the current definition/classification of uremic toxins.” In summary, the authors propose that the current definition of uremic toxins should remain organized on hemodialysis strategies, membranes, and removal patterns since hemodialysis is the most frequently applied therapeutic strategy to reduce their concentration in advanced CKD. Nevertheless, the work group also acknowledges that any classification based on cutoff values and/or molecular spatial configurations is arbitrary and will likely need to be changed with therapeutic advancements. Furthermore, the current physicochemical classification might be extended to reflect the degree of toxicity of a specific toxin that is likely to support more personalized and targeted dialysis prescriptions and improve the outcomes for patients with CKD.

1.
National Kidney Foundation. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884–930.
2.
Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, Lameire N, et al. Chronic kidney disease as cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant. 2005;20(6):1048–56.
3.
Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002;347(25):2010–9.
4.
Rocco MV, Dwyer JT, Larive B, Greene T, Cockram DB, Chumlea WC, et al. The effect of dialysis dose and membrane flux on nutritional parameters in hemodialysis patients: results of the HEMO Study. Kidney Int. 2004;65(6):2321–34.
5.
FHN Trial Group; Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, et al. In-center hemodialysis six times per week versus three times per week. New Engl J Med. 2010;363(24):2287–300.
6.
Grooteman MP, van den Dorpel MA, Bots ML, Penne EL, van der Weerd NC, Mazairac AH, et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J Am Soc Nephrol. 2012;23(6):1087–96.
7.
Boschetti-de-Fierro A, Voigt M, Storr M, Krause B. MCO membranes: enhanced selectivity in high-flux class. Sci Rep. 2015;5:18448.
8.
Vanholder RC, Eloot S, Glorieux GL. Future avenues to decrease uremic toxin concentration. Am J Kidney Dis. 2016;67(4):664–76.
9.
Tijink MS, Wester M, Glorieux G, Gerritsen KG, Sun J, Swart PC, et al. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials. 2013;34(32):7819–28.
10.
Krieter DH, Devine E, Korner T, Ruth M, Wanner C, Raine M, et al. Haemodiafiltration at increased plasma ionic strength for improved protein-bound toxin removal. Acta Physiol 2017;219(2):510–20.
11.
Breyer MD, Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov. 2016;15(8):568–88.
12.
Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol. 2017;13(2):77–89.
13.
Schulman G, Vanholder R, Niwa T. AST-120 for the management of progression of chronic kidney disease. Int J Nephrol Renovasc Dis. 2014;7:49–56.
14.
Vanholder R, Glorieux G. The intestine and the kidneys: A bad marriage can be hazardous. Clin Kidney J. 2015;8(2):168–79.
15.
Rosner M, Reis T, Husain-Syed F, Vanholder R, Hutchison C, Stenvinkel P, et al. Classification of uremic toxins and their role in kidney failure. Clin J Am Soc Nephrol. 2021;16(12):1918–28.
16.
Vanholder R, Glorieux G, De Smet R, Lameire N; European Uremic Toxin Work Group. New insights in uremic toxins. Kidney Int Suppl. 2003(84):S6–10.
17.
Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.
18.
Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, et al. Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012;23(7):1258–70.
19.
Rhee EP, Souza A, Farrell L, Pollak MR, Lewis GD, Steele DJ, et al. Metabolite profiling identifies markers of uremia. J Am Soc Nephrol. 2010;21(6):1041–51.
20.
Meert N, Schepers E, Glorieux G, Van Landschoot M, Goeman JL, Waterloos MA, et al. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrol Dial Transplant. 2012;27(6):2388–96.
21.
Sirich TL, Aronov PA, Plummer NS, Hostetter TH, Meyer TW. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 2013;84(3):585–90.
22.
Vanholder R, Boelaert J, Glorieux G, Eloot S. New methods and technologies for measuring uremic toxins and quantifying dialysis adequacy. Sem Dial. 2015;28(2):114–24.
23.
Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J, et al. A bench to bedside view of uremic toxins. J Am Soc Nephrol. 2008;19(5):863–70.
24.
Pletinck A, Glorieux G, Schepers E, Cohen G, Gondouin B, Van Landschoot M, et al. Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall. J Am Soc Nephrol. 2013;24(12):1981–94.
25.
Dou L, Bertrand E, Cerini C, Faure V, Sampol J, Vanholder R, et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004;65(2):442–51.
26.
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and clinical impact of organic uremic retention solutes: A comprehensive update. Toxins. 2018;10(1):33.
27.
Ward RA, Greene T, Hartmann B, Samtleben W. Resistance to intercompartmental mass transfer limits beta2-microglobulin removal by post-dilution hemodiafiltration. Kidney Int. 2006;69(8):1431–7.
28.
Hai X, Landeras V, Dobre MA, DeOreo P, Meyer TW, Hostetter TH. Mechanism of Prominent Trimethylamine Oxide (TMAO) accumulation in hemodialysis patients. PLoS One. 2015;10(12):e0143731.
29.
Eloot S, van Biesen W, Dhondt A, de Smet R, Marescau B, De Deyn PP, et al. Impact of increasing haemodialysis frequency versus haemodialysis duration on removal of urea and guanidino compounds: a kinetic analysis. Nephrol Dial Transplant. 2009;24(7):2225–32.
30.
Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW. Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. J Am Soc Nephrol. 2014;25(3):615–22.
31.
Marquez IO, Tambra S, Luo FY, Li Y, Plummer NS, Hostetter TH, et al. Contribution of residual function to removal of protein-bound solutes in hemodialysis. Clin J Am Soc Nephrol. 2011;6(2):290–6.
32.
Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of colon-derived uremic solutes. Clin J Am Soc Nephrol. 2018;13(9):1398–404.
33.
Snauwaert E, Holvoet E, Van Biesen W, Raes A, Glorieux G, Vande Walle J, et al. Uremic toxin concentrations are related to residual kidney function in the pediatric hemodialysis population. Toxins. 2019;11(4).
34.
Breyer MD, Qi Z. Better nephrology for mice--and man. Kidney Int. 2010;77(6):487–9.
35.
Smith JL, Wishnok JS, Deen WM. Metabolism and excretion of methylamines in rats. Toxicol Appl Pharmacol. 1994;125(2):296–308.
36.
Leong SC, Sao JN, Taussig A, Plummer NS, Meyer TW, Sirich TL. Residual function effectively controls plasma concentrations of secreted solutes in patients on twice weekly hemodialysis. J Am Soc Nephrol. 2018;29(7):1992–9.
37.
Gomez M, Banon-Maneus E, Arias-Guillen M, Maduell F. Assessment of removal and adsorption enhancement of high-flux hemodialyzers in convective therapies by a novel in vitro uremic matrix. Sci Rep. 2020;10(1):17403.
38.
Maheshwari V, Thijssen S, Tao X, Fuertinger DH, Kappel F, Kotanko P. In silico comparison of protein-bound uremic toxin removal by hemodialysis, hemodiafiltration, membrane adsorption, and binding competition. Sci Rep. 2019;9(1):909.
39.
Etinger A, Kumar SR, Ackley W, Soiefer L, Chun J, Singh P, et al. The effect of isohydric hemodialysis on the binding and removal of uremic retention solutes. PLoS One. 2018;13(2):e0192770.
40.
Rossi M, Johnson DW, Morrison M, Pascoe EM, Coombes JS, Forbes JM, et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): A randomized trial. Clin J Am Soc Nephrol. 2016;11(2):223–31.
41.
Sirich TL, Meyer TW. Manipulating the microbiome. Kidney Int. 2017;91(2):274–6.
42.
Stinghen AE, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic toxicity of advanced glycation end products in CKD. J Am Soc Nephrol. 2016;27(2):354–70.
43.
Vanholder R, Annemans L, Brown E, Gansevoort R, Gout-Zwart JJ, Lameire N, et al. Reducing the costs of chronic kidney disease while delivering quality health care: a call to action. Nat Rev Nephrol. 2017;13(7):393–409.
44.
Zhao D, Sonawane ND, Levin MH, Yang B. Comparative transport efficiencies of urea analogues through urea transporter UT-B. Biochim Biophys Acta. 2007;1768(7):1815–21.
45.
Eloot S, Torremans A, De Smet R, Marescau B, De Wachter D, De Deyn PP, et al. Kinetic behavior of urea is different from that of other water-soluble compounds: The case of the guanidino compounds. Kidney Int. 2005;67(4):1566–75.
46.
Schepers E, Speer T, Bode-Boger SM, Fliser D, Kielstein JT. Dimethylarginines ADMA and SDMA: The real water-soluble small toxins? Sem Nephrol. 2014;34(2):97–105.
47.
Niwa T. Removal of protein-bound uraemic toxins by haemodialysis. Blood Purif. 2013;35(Suppl 2):20–5.
48.
Vanholder R, Meert N, Schepers E, Glorieux G, Argiles A, Brunet P, et al. Review on uraemic solutes II: variability in reported concentrations: causes and consequences. Nephrol Dial Transplant. 2007;22(11):3115–21.
49.
Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy: misconceptions in drug discovery. Nat Rev Drug Discov. 2010;9(12):929–39.
50.
Babb AL, Ahmad S, Bergstrom J, Scribner BH. The middle molecule hypothesis in perspective. Am J Kidney Dis. 1981;1(1):46–50.
51.
Leypoldt JK, Storr M, Agar BU, Boschetti-de-Fierro A, Bernardo AA, Kirsch AH, et al. Intradialytic kinetics of middle molecules during hemodialysis and hemodiafiltration. Nephrol Dial Transplant. 2019;34(5):870–7.
52.
Leypoldt JK, Cheung AK, Deeter RB. Rebound kinetics of beta2-microglobulin after hemodialysis. Kidney Int. 1999;56(4):1571–7.
53.
Masereeuw R, Mutsaers HA, Toyohara T, Abe T, Jhawar S, Sweet DH, et al. The kidney and uremic toxin removal: glomerulus or tubule? Sem Nephrol. 2014;34(2):191–208.
54.
Suchy-Dicey AM, Laha T, Hoofnagle A, Newitt R, Sirich TL, Meyer TW, et al. Tubular Secretion in CKD. J Am Soc Nephrol. 2016;27(7):2148–55.
55.
Cheung KWK, Hsueh CH, Zhao P, Meyer TW, Zhang L, Huang SM, et al. The effect of uremic solutes on the organic cation transporter 2. J Pharm Sci. 2017;106(9):2551–7.
56.
Toyohara T, Suzuki T, Morimoto R, Akiyama Y, Souma T, Shiwaku HO, et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J Am Soc Nephrol. 2009;20(12):2546–55.
57.
Koeth RA, Kalantar-Zadeh K, Wang Z, Fu X, Tang WH, Hazen SL. Protein carbamylation predicts mortality in ESRD. J Am Soc Nephrol. 2013;24(5):853–61.
58.
Speer T, Owala FO, Holy EW, Zewinger S, Frenzel FL, Stahli BE, et al. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur Heart J. 2014;35(43):3021–32.
59.
Himmelfarb J, Vanholder R, Mehrotra R, Tonelli M. The current and future landscape of dialysis. Nat Rev Nephrol. 2020;16(10):573–85.
60.
Van Biesen W, De Bacquer D, Verbeke F, Delanghe J, Lameire N, Vanholder R. The glomerular filtration rate in an apparently healthy population and its relation with cardiovascular mortality during 10 years. Eur Heart J. 2007;28(4):478–83.
61.
Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, et al. The systemic nature of CKD. Nat Rev Nephrol. 2017;13(6):344–58.
62.
Wang HE, Gamboa C, Warnock DG, Muntner P. Chronic kidney disease and risk of death from infection. Am J Nephrol. 2011;34(4):330–6.
63.
Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA. Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol. 2013;24(3):353–63.
64.
Leypoldt JK. Kinetics of beta2-microglobulin and phosphate during hemodialysis: Effects of treatment frequency and duration. Sem Dial. 2005;18(5):401–8.
65.
Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, et al. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem. 1999;274(31):21937–42.
66.
Hwang IK, Yoo KY, Li H, Park OK, Lee CH, Choi JH, et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J Neurosci Res. 2009;87(9):2126–37.
67.
de Mello VD, Paananen J, Lindstrom J, Lankinen MA, Shi L, Kuusisto J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. 2017;7:46337.
68.
Zelante T, Puccetti M, Giovagnoli S, Romani L. Regulation of host physiology and immunity by microbial indole-3-aldehyde. Curr Opin Immunol. 2021;70:27–32.
You do not currently have access to this content.