Background: Of 5 clinical trials testing dose response of continuous renal replacement therapy (CRRT) in acute kidney injury, 2 showed a benefit, 2 showed none, and 1 appeared equivocal. However, blood-membrane interactions may dominate macromolecule transport in continuous venovenous hemodiafiltration, reducing the impact of dose adjustment. The dosing arms in the Acute Renal Failure Trial Network (ATN) study may have delivered similar clearances for middle molecules. Methods: We simulated the 2 CRRT doses in the ATN study using a synthetic polydisperse macromolecular probe in bovine blood. Clearance of tracers between 10 and 100 kDa molecular weight was measured during 6 h of therapy. Results: Middle-molecule clearance differed by less than 2 ml/min between the 2 dosing arms. Conclusion: The CRRT prescription used in the ATN study appears to have achieved dose separation for small molecules while holding middle-molecule clearance nearly constant. This may explain the outcome difference between the ATN study and earlier studies, and suggests subsequent trial designs.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.