A mathematical model of solute kinetics for the improvement of hemodialysis treatment is presented. It includes a two-compartment description of the main solutes and a three-compartment model of body fluids (plasma, interstitial and intracellular). The main model parameters can be individually assigned a priori, on the basis of body weight and plasma concentration values measured before beginning the session. Model predictions are compared with clinical data obtained in vivo during 11 different hemodialysis sessions performed on 6 patients with a profiled sodium concentration in the dialysate and a profiled ultrafiltration rate. In all cases, the agreement between the time pattern of model solute concentrations in plasma and the in vivo data proves fairly good as to urea, sodium, chloride, potassium and bicarbonate kinetics. Only in two sessions was blood volume directly measured in the patient, and in both cases the agreement with model predictions was good. In conclusion, the model allows a priori computation of the amount of sodium removed during hemodialysis, and makes it possible to predict the plasma volume changes and plasma osmolarity changes induced by a given sodium concentration profile in the dialysate and by a given ultrafiltration profile. Hence, it can be used to improve clinical tolerance to the dialysis session taking the characteristics of individual patients into account, in order to minimize intradialytic hypotension.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.