Introduction: Domestication and subsequent breed selection has significantly changed the phenotype of most domesticated animal species. Not only has their external appearance changed, in many species, the brain and individual brain regions often differ in size in domesticated strains compared with their wild ancestors. Although the majority of studies on mammals focus on cortical regions, the cerebellum often differs in relative and absolute size between domestic and wild strains, but more specific data on cell sizes and numbers are often lacking. Methods: We quantified cerebellar anatomy in two domesticated strains (Long-Evans and Sprague-Dawley) and one wild type of brown rat (Rattus norvegicus). Using unbiased stereology, we measured the total cerebellum and its layers’ volumes, as well as the number and size of Purkinje cells. Results: Long-Evans rats had a larger total cerebellum volume, in both absolute and relative terms, than Sprague-Dawley and wild rats, but no other significant differences were detected. Significant differences in the absolute and relative sizes of the molecular, granule cell, and white matter layers were also found, but the differences were inconsistent among strains such that the largest values alternated between the two laboratory strains. The absolute number of Purkinje cells did not differ among strains, but one population of Sprague-Dawley rats and the wild rats had more Purkinje cells relative to cerebellar volume. Last, Long-Evans rats had significantly smaller Purkinje cells than the other strains in both absolute and relative terms. Conclusion: Only one of the two domesticated strains differed from wild rats in cerebellar anatomy. Our results therefore demonstrate that changes in the brains of domesticated animals do not necessarily follow a universal rule; they can vary between different strains. This highlights the importance of including more than one strain in wild-domesticate comparisons in brain anatomy and avoiding the oversimplification of the effects of domestication on the brain.

1.
Larson
G
,
Karlsson
EK
,
Perri
A
,
Webster
MT
,
Ho
SYW
,
Peters
J
, et al
.
Rethinking dog domestication by integrating genetics, archeology, and biogeography
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
23
):
8878
83
.
2.
Bergström
A
,
Stanton
DW
,
Taron
UH
,
Frantz
L
,
Sinding
M-HS
,
Ersmark
E
, et al
.
Grey wolf genomic history reveals a dual ancestry of dogs
.
Nature
.
2022
;
607
(
7918
):
313
20
.
3.
Freedman
AH
,
Gronau
I
,
Schweizer
RM
,
Ortega-Del Vecchyo
D
,
Han
E
,
Silva
PM
, et al
.
Genome sequencing highlights the dynamic early history of dogs
.
PLoS Genet
.
2014
;
10
(
1
):
e1004016
.
4.
Francis
RC
.
Domesticated: evolution in a man-made world
.
WW Norton & Company
;
2015
.
5.
Darwin
C
.
The variation of animals and plants under domestication
.
John Murray
;
1868
.
6.
Wilkins
AS
,
Wrangham
RW
,
Fitch
WT
.
The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics
.
Genetics
.
2014
;
197
(
3
):
795
808
.
7.
Setchell
B
.
Domestication and reproduction
.
Anim Reprod Sci
.
1992
;
28
(
1–4
):
195
202
.
8.
Belyaev
DK
.
Domestication of animals
.
Science
.
1969
;
5
(
1
):
47
52
.
9.
Ebinger
P
.
Domestication and plasticity of brain organization in mallards (Anas platyrhynchos)
.
Brain Behav Evol
.
1995
;
45
(
5
):
286
300
.
10.
Hecht
EE
,
Barton
SA
,
Rogers Flattery
CN
,
Meza Meza
A
.
The evolutionary neuroscience of domestication
.
Trends Cogn Sci
.
2023
;
27
(
6
):
553
67
.
11.
Kruska
D
.
On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization
.
Brain Behav Evol
.
2005
;
65
(
2
):
73
108
.
12.
Welniak–Kaminska
M
,
Fiedorowicz
M
,
Orzel
J
,
Bogorodzki
P
,
Modlinska
K
,
Stryjek
R
, et al
.
Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study
.
PLoS One
.
2019
;
14
(
4
):
e0215348
.
13.
Kruska
D
.
Mammalian domestication and its effect on brain structure and behavior
. In:
Jerison
HJ
,
Jerison
I
, editors.
Intelligence and evolutionary biology
.
Berlin, Heidelberg
:
Springer Berlin Heidelberg
;
1988
. p.
211
50
.
14.
Hammer
RP
Jr
,
Hori
KM
,
Blanchard
RJ
,
Blanchard
DC
.
Domestication alters 5-HT1A receptor binding in rat brain
.
Pharmacol Biochem Behav
.
1992
;
42
(
1
):
25
8
.
15.
Popova
NK
,
Voitenko
NN
,
Kulikov
A
,
Avgustinovich
D
.
Evidence for the involvement of central serotonin in mechanism of domestication of silver foxes
.
Pharmacol Biochem Behav
.
1991
;
40
(
4
):
751
6
.
16.
Ruan
C
,
Zhang
Z
.
Laboratory domestication changed the expression patterns of oxytocin and vasopressin in brains of rats and mice
.
Anat Sci Int
.
2016
;
91
(
4
):
358
70
.
17.
Sato
DX
,
Rafati
N
,
Ring
H
,
Younis
S
,
Feng
C
,
Blanco-Aguiar
JA
, et al
.
Brain transcriptomics of wild and domestic rabbits suggests that changes in dopamine signaling and ciliary function contributed to evolution of tameness
.
Genome Biol Evol
.
2020
;
12
(
10
):
1918
28
.
18.
Sacco
JC
,
Starr
E
,
Weaver
A
,
Dietz
R
,
Spocter
MA
.
Resequencing of the TMF-1 (TATA Element Modulatory Factor) regulated protein (TRNP1) gene in domestic and wild canids
.
Canine Med Genet
.
2023
;
10
(
1
):
10
.
19.
Albert
FW
,
Somel
M
,
Carneiro
M
,
Aximu-Petri
A
,
Halbwax
M
,
Thalmann
O
, et al
.
A comparison of brain gene expression levels in domesticated and wild animals
.
PLoS Genet
.
2012
;
8
(
9
):
e1002962
.
20.
Alexandrovich
YV
,
Antonov
E
,
Shikhevich
S
,
Kharlamova
A
,
Meister
L
,
Makovka
Y
, et al
.
The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes
.
Vavilovskii Zhurnal Genet Selektsii
.
2023
;
27
(
6
):
651
61
.
21.
Balcarcel
A
,
Veitschegger
K
,
Clauss
M
,
Sánchez-Villagra
MR
.
Intensive human contact correlates with smaller brains: differential brain size reduction in cattle types
.
Proc Biol Sci
.
2021
;
288
(
1952
):
20210813
.
22.
Brusini
I
,
Carneiro
M
,
Wang
C
,
Rubin
C-J
,
Ring
H
,
Afonso
S
, et al
.
Changes in brain architecture are consistent with altered fear processing in domestic rabbits
.
Proc Natl Acad Sci U S A
.
2018
;
115
(
28
):
7380
5
.
23.
Hecht
EE
,
Kukekova
AV
,
Gutman
DA
,
Acland
GM
,
Preuss
TM
,
Trut
LN
.
Neuromorphological changes following selection for tameness and aggression in the Russian farm-fox experiment
.
J Neurosci
.
2021
;
41
(
28
):
6144
56
.
24.
Price
EO
.
Animal domestication and behavior
.
Wallingford, UK
:
CAB International
;
2002
.
25.
Hecht
EE
,
Smaers
JB
,
Dunn
WD
,
Kent
M
,
Preuss
TM
,
Gutman
DA
.
Significant neuroanatomical variation among domestic dog breeds
.
J Neurosci
.
2019
;
39
(
39
):
7748
58
.
26.
Modlinska
K
,
Pisula
W
.
The Norway rat, from an obnoxious pest to a laboratory pet
.
Elife
.
2020
;
9
:
e50651
.
27.
Himmler
BT
,
Stryjek
R
,
Modlinska
K
,
Derksen
SM
,
Pisula
W
,
Pellis
SM
.
How domestication modulates play behavior: a comparative analysis between wild rats and a laboratory strain of Rattus norvegicus
.
J Comp Psychol
.
2013
;
127
(
4
):
453
64
.
28.
Himmler
SM
,
Lewis
JM
,
Pellis
SM
.
The development of strain typical defensive patterns in the play fighting of laboratory rats
.
Int J Comp Psychol
.
2014
;
27
(
3
).
29.
Himmler
SM
,
Modlinska
K
,
Stryjek
R
,
Himmler
BT
,
Pisula
W
,
Pellis
SM
.
Domestication and diversification: a comparative analysis of the play fighting of the Brown Norway, Sprague-Dawley, and Wistar laboratory strains of (Rattus norvegicus)
.
J Comp Psychol
.
2014
;
128
(
3
):
318
27
.
30.
Stryjek
R
,
Modlińska
K
,
Pisula
W
.
Species specific behavioural patterns (digging and swimming) and reaction to novel objects in wild type, Wistar, Sprague-Dawley and Brown Norway rats
.
PLoS One
.
2012
;
7
(
7
):
e40642
.
31.
Bamber
RT
,
Boice
R
.
The labyrinth method of comparing wild and domestic rats: origins of animal psychology revisited
.
Psychon Sci
.
1972
;
29
(
3
):
161
3
.
32.
Boice
R
.
Some behavioral tests of domestication in Norway rats
.
Behav
.
1972
;
42
(
3–4
):
198
230
.
33.
Whishaw
IQ
,
Gorny
B
,
Foroud
A
,
Kleim
JA
.
Long–Evans and Sprague–Dawley rats have similar skilled reaching success and limb representations in motor cortex but different movements: some cautionary insights into the selection of rat strains for neurobiological motor research
.
Behav Brain Res
.
2003
;
145
(
1–2
):
221
32
.
34.
Harrington
GM
.
Strain differences in open-field behavior of the rat
.
Psychon Sci
.
1972
;
27
(
1
):
51
3
.
35.
Glowa
JR
,
Geyer
MA
,
Gold
PW
,
Sternberg
EM
.
Differential startle amplitude and corticosterone response in rats
.
Neuroendocrinology
.
1992
;
56
(
5
):
719
23
.
36.
Glowa
JR
,
Hansen
CT
.
Differences in response to an acoustic startle stimulus among forty-six rat strains
.
Behav Genet
.
1994
;
24
(
1
):
79
84
.
37.
Graham
LK
,
Yoon
T
,
Lee
HJ
,
Kim
JJ
.
Strain and sex differences in fear conditioning: 22 kHz ultrasonic vocalizations and freezing in rats
.
Psychol Neurosci
.
2009
;
2
:
219
25
.
38.
Sales
GD
.
Strain differences in the ultrasonic behavior of rats (Rattus norvegicus)
.
Am Zool
.
1979
;
19
(
2
):
513
27
.
39.
Andrews
JS
,
Jansen
JHM
,
Linders
S
,
Princen
A
,
Broekkamp
CLE
.
Performance of four different rat strains in the autoshaping, two-object discrimination, and swim maze tests of learning and memory
.
Physiol Behav
.
1995
;
57
(
4
):
785
90
.
40.
Keeley
R
,
Bye
C
,
Trow
J
,
McDonald
R
.
Strain and sex differences in brain and behaviour of adult rats: learning and memory, anxiety and volumetric estimates
.
Behav Brain Res
.
2015
;
288
:
118
31
.
41.
Koizumi
R
,
Kiyokawa
Y
,
Mikami
K
,
Ishii
A
,
Tanaka
KD
,
Tanikawa
T
, et al
.
Structural differences in the brain between wild and laboratory rats (Rattus norvegicus): potential contribution to wariness
.
J Vet Med Sci
.
2018
;
80
(
7
):
1054
60
.
42.
Kruska
D
.
Comparative quantitative investigations on brains of wild cavies (Cavia aperea) and Guinea pigs (Cavia aperea f. porcellus). A contribution to size changes of CNS structures due to domestication
.
Mamm Biol
.
2014
;
79
(
4
):
230
9
.
43.
Ebinger
P
.
Vergleichend-quantitative untersuchungen an wild-und laborratten 1
.
Z Tierzuecht Zuechtungsbiol
.
1972
;
89
(
1–4
):
34
57
.
44.
Sorbe
D
,
Kruska
D
.
Vergleichende allometrische Untersuchungen an den Schädeln von Wander- und Laborratten
.
Zool Anz
;
1975
.
45.
Fine
EJ
,
Ionita
CC
,
Lohr
L
.
The history of the development of the cerebellar examination
.
Semin Neurol
.
2002
;
22
(
4
):
375
84
.
46.
Buckner
RL
.
The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging
.
Neuron
.
2013
;
80
(
3
):
807
15
.
47.
Chao
OY
,
Pathak
SS
,
Zhang
H
,
Augustine
GJ
,
Christie
JM
,
Kikuchi
C
, et al
.
Social memory deficit caused by dysregulation of the cerebellar vermis
.
Nat Commun
.
2023
;
14
(
1
):
6007
.
48.
Schmahmann
JD
.
The cerebellum and cognition
.
Neurosci Lett
.
2019
;
688
:
62
75
.
49.
Yanai
J
.
Strain and sex differences in the rat brain
.
Acta Anat
.
1979
;
103
(
2
):
150
8
.
50.
Racicot
KJ
,
Popic
C
,
Cunha
F
,
Wright
D
,
Henriksen
R
,
Iwaniuk
AN
.
The cerebellar anatomy of red junglefowl and white leghorn chickens: insights into the effects of domestication on the cerebellum
.
R Soc Open Sci
.
2021
;
8
(
10
):
211002
.
51.
Itō
M
The cerebellum and neural control
.
New York
:
Raven Press Book
;
1984
.
52.
Hirano
T
.
Regulation and interaction of multiple types of synaptic plasticity in a purkinje neuron and their contribution to motor learning
.
Cerebellum
.
2018
;
17
(
6
):
756
65
.
53.
Popa
LS
,
Streng
ML
,
Ebner
TJ
.
Purkinje cell representations of behavior: diary of a busy neuron
.
Neuroscientist
.
2019
;
25
(
3
):
241
57
.
54.
Shim
HG
,
Lee
Y-S
,
Kim
SJ
.
The emerging concept of intrinsic plasticity: activity-dependent modulation of intrinsic excitability in cerebellar Purkinje cells and motor learning
.
Exp Neurobiol
.
2018
;
27
(
3
):
139
54
.
55.
Harker
KT
,
Whishaw
IQ
.
Place and matching-to-place spatial learning affected by rat inbreeding (Dark–Agouti, Fischer 344) and albinism (Wistar, Sprague–Dawley) but not domestication (wild rat vs. Long–Evans, Fischer–Norway)
.
Behav Brain Res
.
2002
;
134
(
1–2
):
467
77
.
56.
Stryjek
R
,
Modlińska
K
,
Turlejski
K
,
Pisula
W
.
Circadian rhythm of outside-nest activity in wild (WWCPS), albino and pigmented laboratory rats
.
PLoS One
.
2013
;
8
(
6
):
e66055
.
57.
Stryjek
R
,
Pisula
W
.
Warsaw wild captive Pisula stryjek rats (WWCPS)-establishing a breeding colony of Norway rat in captivity
.
Pol Psychol Bull
.
2008
;
39
(
2
):
67
70
.
58.
Simpson
J
,
Kelly
JP
.
The impact of environmental enrichment in laboratory rats: behavioural and neurochemical aspects
.
Behav Brain Res
.
2011
;
222
(
1
):
246
64
.
59.
Howard
V
,
Reed
M
.
Unbiased stereology: three-dimensional measurement in microscopy
.
Garland Sci
.
2004
.
60.
Deacon
TW
.
Fallacies of progression in theories of brain-size evolution
.
Int J Primatol
.
1990
;
11
(
3
):
193
236
.
61.
Cunha
F
,
Racicot
K
,
Nahirney
J
,
Heuston
C
,
Wylie
DR
,
Iwaniuk
AN
.
Allometric scaling rules of the cerebellum in galliform birds
.
Brain Behav Evol
.
2020
;
95
(
2
):
78
92
.
62.
El-Andari
R
,
Cunha
F
,
Tschirren
B
,
Iwaniuk
AN
.
Selection for divergent reproductive investment affects neuron size and foliation in the cerebellum
.
Brain Behav Evol
.
2020
;
95
(
2
):
69
77
.
63.
Nithianantharajah
J
,
Hannan
AJ
.
Enriched environments, experience-dependent plasticity and disorders of the nervous system
.
Nat Rev Neurosci
.
2006
;
7
(
9
):
697
709
.
64.
Foti
F
,
Laricchiuta
D
,
Cutuli
D
,
De Bartolo
P
,
Gelfo
F
,
Angelucci
F
, et al
.
Exposure to an enriched environment accelerates recovery from cerebellar lesion
.
Cerebellum
.
2011
;
10
(
1
):
104
19
.
65.
Ham
JR
,
Szabo
M
,
Annor-Bediako
J
,
Stark
RAM
,
Iwaniuk
AN
,
Pellis
SM
.
Quality not quantity: deficient juvenile play experiences lead to altered medial prefrontal cortex neurons and sociocognitive skill deficits
.
Dev Psychobiol
.
2024
;
66
(
2
):
e22456
.
66.
Schneider
P
,
Bindila
L
,
Schmahl
C
,
Bohus
M
,
Meyer-Lindenberg
A
,
Lutz
B
, et al
.
Adverse social experiences in adolescent rats result in enduring effects on social competence, pain sensitivity and endocannabinoid signaling
.
Front Behav Neurosci
.
2016
;
10
:
203
.
67.
Siviy
SM
,
Baliko
CN
,
Bowers
KS
.
Rough-and-tumble play behavior in Fischer-344 and Buffalo rats: effects of social isolation
.
Physiol Behav
.
1997
;
61
(
4
):
597
602
.
68.
Siviy
SM
,
Love
NJ
,
DeCicco
BM
,
Giordano
SB
,
Seifert
TL
.
The relative playfulness of juvenile Lewis and Fischer-344 rats
.
Physiol Behav
.
2003
;
80
(
2–3
):
385
94
.
69.
Stark
RAM
,
Ramkumar
R
,
Pellis
SM
.
Deficient play-derived experiences in juvenile Long Evans rats reared with a Fischer 344 partner: a deficiency shared by both sexes
.
Int J Comp Psychol
.
2021
;
34
(
0
).
70.
Pellis
SM
,
Pellis
VC
.
Differential rates of attack, defense, and counterattack during the developmental decrease in play fighting by male and female rats
.
Dev Psychobiol
.
1990
;
23
(
3
):
215
31
.
71.
Smith
LK
,
Forgie
ML
,
Pellis
SM
.
Mechanisms underlying the absence of the pubertal shift in the playful defense of female rats
.
Dev Psychobiol
.
1998
;
33
(
2
):
147
56
.
72.
Wahlsten
D
,
Metten
P
,
Phillips
TJ
,
Boehm
SL
,
Burkhart-Kasch
S
,
Dorow
J
, et al
.
Different data from different labs: lessons from studies of gene–environment interaction
.
J Neurobiol
.
2003
;
54
(
1
):
283
311
.
73.
Gregory
TR
.
Genome size evolution in animals
. In:
Gregory
TR
, editor.
The evolution of the genome
.
Elsevier
;
2005
. p.
3
87
.
74.
Wu
Y
,
Pegoraro
AF
,
Weitz
DA
,
Janmey
P
,
Sun
SX
.
The correlation between cell and nucleus size is explained by an eukaryotic cell growth model
.
PLoS Comput Biol
.
2022
;
18
(
2
):
e1009400
.
75.
Turner
KM
,
Burne
TH
.
Comprehensive behavioural analysis of Long Evans and Sprague-Dawley rats reveals differential effects of housing conditions on tests relevant to neuropsychiatric disorders
.
PLoS One
.
2014
;
9
(
3
):
e93411
.
76.
Malerba
ME
,
Marshall
DJ
.
Larger cells have relatively smaller nuclei across the Tree of Life
.
Evol Lett
.
2021
;
5
(
4
):
306
14
.
77.
Szarski
H
.
Changes in the amount of DNA in cell nuclei during vertebrate evolution
.
Nature
.
1970
;
226
(
5246
):
651
2
.
78.
Schleifenbaum
C
.
The postnatal development of the brain of poodles and wolves
.
Z Anat Entwickl Gesch
.
1973
;
141
(
2
):
179
205
.
79.
Weidemann
W
.
Die Beziehungen von Hirngewicht und Körpergewicht bei Wölfen und Pudeln sowie deren Kreuzungsgenerationen N 1 und N 2
.
Mamm Biol
.
1970
;
35
:
238
47
.
80.
Zimen
E
.
Ontogeny of approach and flight behavior towards humans in wolves, poodles and wolf-poodle hybrids
. In:
Frank
H
, editor.
Man and wolf: advances, issues, and problems in captive wolf research
.
Dordrecht
:
Springer
;
1987
. p.
275
92
.
81.
Klatt
B
.
Über die Veränderung der Schädelkapazität in der Domestikation
.
Sber Ges naturf Freunde Berl
.
1912
;
3
:
153
79
.
82.
Röhrs
M
,
Ebinger
P
.
Die beurteilung von hirngrößenunterschieden zwischen wild‐und haustieren
.
J Zool Syst Evol Res
.
1978
;
16
(
1
):
1
14
.
83.
Ebinger
P
,
Löhmer
R
.
A volumetric comparison of brains between greylag geese (Anser anser L.) and domestic geese
.
J Hirnforsch
.
1987
;
28
(
3
):
291
9
.
84.
Ebinger
P
,
Röhrs
M
.
Volumetric analysis of brain structures, especially of the visual system in wild and domestic turkeys (Meleagris gallopavo)
.
J Hirnforsch
.
1995
;
36
(
2
):
219
28
.
85.
Ebinger
P
,
Röhrs
M
,
Pohlenz
J
.
Reductions of brain and eye weight in the wild and domestic Turkey (Meleagris gallopavo)
.
J Zool Syst Evol Res
.
1989
;
27
(
2
):
142
8
.
86.
Kruska
D
.
The effect of domestication on brain size and composition in the mink (Mustela vison)
.
J Zool
.
1996
;
239
(
4
):
645
61
.
87.
Peterson
AT
,
Brisbin
IL
Jr
.
Genetic endangerment of wild red junglefowl Gallus gallus
.
Bird Conserv Int
.
1998
;
8
(
4
):
387
94
.
88.
Wu
MY
,
Low
GW
,
Forcina
G
,
van Grouw
H
,
Lee
BPYH
,
Oh
RRY
, et al
.
Historic and modern genomes unveil a domestic introgression gradient in a wild red junglefowl population
.
Evol Appl
.
2020
;
13
(
9
):
2300
15
.
89.
Johnston
RF
,
Siegel-Causey
D
,
Johnson
SG
.
European populations of the rock dove Columba livia and genotypic extinction
.
Am Midl Nat
.
1988
;
120
:
1
10
.
90.
Smith
WJ
,
Quilodrán
CS
,
Jezierski
MT
,
Sendell-Price
AT
,
Clegg
SM
.
The wild ancestors of domestic animals as a neglected and threatened component of biodiversity
.
Conserv Biol
.
2022
;
36
(
3
):
e13867
.
You do not currently have access to this content.