Background: Astrocytes, a type of glial cell in the brain, show remarkable morphological and functional diversity across mammalian species. Summary: This review explores astrocyte biology beyond the commonly studied rodent and primate models, focusing on nontraditional species to uncover evolutionary and adaptive features. Key Messages: By examining astrocytes in marsupials, monotremes, chiropterans, artiodactyls, carnivorans, and cetaceans, we highlight species-specific variations in astrocyte morphology, distribution, and molecular markers. These adaptations are linked to ecological demands, such as echolocation in bats or diving in cetaceans, and underscore the evolutionary pressures shaping astrocyte specialization. Additionally, we explore unique astrocytic subtypes, such as interlaminar astrocytes and their distribution across mammalian lineages, as well as the expression of connexins, GFAP, and other key markers across species. This comparative review provides insights into the evolutionary trajectory of astrocytes and their contributions to neural health and disease, emphasizing the need for broader taxonomic representation in astrocyte research.

1.
Verkhratsky
A
,
Butt
AM
.
Neuroglia: function and pathology
.
New York
:
Elsevier
;
2023
.
2.
Verkhratsky
A
,
Nedergaard
M
.
Physiology of astroglia
.
Physiol Rev
.
2018
;
98
(
1
):
239
389
.
3.
Neuroglia
.
Function and pathology
;
2023
. Available from: https://shop.elsevier.com/books/neuroglia-function-and-pathology/verkhratsky/978-0-12-821565-4 (Accessed Dec 01, 2024).
4.
Verkhratsky
A
,
Butt
A
,
Li
B
,
Illes
P
,
Zorec
R
,
Semyanov
A
, et al
.
Astrocytes in human central nervous system diseases: a frontier for new therapies
.
Sig Transduct Target Ther
.
2023
;
8
(
1
):
396
37
.
5.
Degl’Innocenti
E
,
Dell’Anno
MT
.
Human and mouse cortical astrocytes: a comparative view from development to morphological and functional characterization
.
Front Neuroanat
.
2023
;
17
:
1130729
.
6.
Oberheim
NA
,
Takano
T
,
Han
X
,
He
W
,
Lin
JHC
,
Wang
F
, et al
.
Uniquely hominid features of adult human astrocytes
.
J Neurosci
.
2009
;
29
(
10
):
3276
87
.
7.
Bartels
T
,
Rowitch
DH
,
Bayraktar
OA
.
Generation of mammalian astrocyte functional heterogeneity
.
Cold Spring Harb Perspect Biol
.
2024
;
16
(
11
):
a041351
.
8.
Li
J
,
Pan
L
,
Pembroke
WG
,
Rexach
JE
,
Godoy
MI
,
Condro
MC
, et al
.
Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes
.
Nat Commun
.
2021
;
12
(
1
):
3958
.
9.
Upham
NS
,
Esselstyn
JA
,
Jetz
W
.
Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation
.
PLoS Biol
.
2019
;
17
(
12
):
e3000494
.
10.
Liu
G-M
,
Pan
Q
,
Du
J
,
Zhu
PF
,
Liu
WQ
,
Li
ZH
, et al
.
Improved mammalian family phylogeny using gap-rare multiple sequence alignment: a timetree of extant placentals and marsupials
.
Zool Res
.
2023
;
44
(
6
):
1064
79
.
11.
Jurga
AM
,
Paleczna
M
,
Kadluczka
J
,
Kuter
KZ
.
Beyond the GFAP-astrocyte protein markers in the brain
.
Biomolecules
.
2021
;
11
(
9
):
1361
.
12.
Cahoy
JD
,
Emery
B
,
Kaushal
A
,
Foo
LC
,
Zamanian
JL
,
Christopherson
KS
, et al
.
A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function
.
J Neurosci
.
2008
;
28
(
1
):
264
78
.
13.
Gerlach
R
,
Demel
G
,
König
HG
,
Gross
U
,
Prehn
JHM
,
Raabe
A
, et al
.
Active secretion of S100B from astrocytes during metabolic stress
.
Neuroscience
.
2006
;
141
(
4
):
1697
701
.
14.
Rescher
U
,
Gerke
V
.
S100A10/p11: family, friends and functions
.
Pflugers Arch
.
2008
;
455
(
4
):
575
82
.
15.
Rodriguez-Callejas
JD
,
Irene-Fierro
M
,
Aguilar-Navarro
S
,
Fuchs
E
,
Perez-Cruz
C
.
Astroglial atrophy associates with loss of nuclear S100A10 in the hippocampus of aged male tree shrews
.
bioRxiv
;
2024
.
16.
Orellana
JA
,
Retamal
MA
,
Moraga-Amaro
R
,
Stehberg
J
.
Role of astroglial hemichannels and pannexons in memory and neurodegenerative diseases
.
Front Integr Neurosci
.
2016
;
10
:
26
.
17.
Zeisel
A
,
Muñoz-Manchado
AB
,
Codeluppi
S
,
Lönnerberg
P
,
La Manno
G
,
Juréus
A
, et al
.
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
.
Science
.
2015
;
347
(
6226
):
1138
42
.
18.
Papadopoulos
MC
,
Manley
GT
,
Krishna
S
,
Verkman
AS
.
Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema
.
FASEB J
.
2004
;
18
(
11
):
1291
3
.
19.
Lehre
KP
,
Danbolt
NC
.
The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain
.
J Neurosci
.
1998
;
18
(
21
):
8751
7
.
20.
Rothstein
JD
,
Martin
L
,
Levey
AI
,
Dykes-Hoberg
M
,
Jin
L
,
Wu
D
, et al
.
Localization of neuronal and glial glutamate transporters
.
Neuron
.
1994
;
13
(
3
):
713
25
.
21.
Baek
JH
,
Vignesh
A
,
Son
H
,
Lee
DH
,
Roh
GS
,
Kang
SS
, et al
.
Glutamine supplementation ameliorates chronic stress-induced reductions in glutamate and glutamine transporters in the mouse prefrontal cortex
.
Exp Neurobiol
.
2019
;
28
(
2
):
270
8
.
22.
Levine
J
,
Kwon
E
,
Paez
P
,
Yan
W
,
Czerwieniec
G
,
Loo
JA
, et al
.
Traumatically injured astrocytes release a proteomic signature modulated by STAT3 dependent cell survival
.
Glia
.
2016
;
64
(
5
):
668
94
.
23.
Flügge
G
,
Araya-Callis
C
,
Garea-Rodriguez
E
,
Stadelmann-Nessler
C
,
Fuchs
E
.
NDRG2 as a marker protein for brain astrocytes
.
Cell Tissue Res
.
2014
;
357
(
1
):
31
41
.
24.
Butler
AB
,
Hodos
W
.
Comparative vertebrate neuroanatomy: evolution and adaptation
. 2nd ed.
Wiley
;
2005
.
25.
Lambeth
L
,
Blunt
MJ
.
Electron-microscopic study of monotreme neuroglia
.
Acta Anat (Basel)
.
1975
;
93
(
1
):
115
25
.
26.
Feldhamer
GA
.
Mammalogy: adaptation, diversity, ecology
.
JHU Press
;
2007
.
27.
King
JS
.
A comparative investigation of neuroglia in representative vertebrates: a silver carbonate study
.
J Morphol
.
1966
;
119
(
4
):
435
65
.
28.
Tabata
H
.
Diverse subtypes of astrocytes and their development during corticogenesis
.
Front Neurosci
.
2015
;
9
(
Apr
):
114
.
29.
Tavares
G
,
Martins
M
,
Correia
JS
,
Sardinha
VM
,
Guerra-Gomes
S
,
das Neves
SP
, et al
.
Employing an open-source tool to assess astrocyte tridimensional structure
.
Brain Struct Funct
.
2017
;
222
(
4
):
1989
99
.
30.
Oberheim
NA
,
Takano
T
,
Han
X
,
He
W
,
Lin
JHC
,
Wang
F
, et al
.
Uniquely hominid features of adult human astrocytes
.
J Neurosci
.
2009
;
29
(
10
):
3276
87
.
31.
Shu
T
,
Richards
LJ
.
Cortical axon guidance by the glial wedge during the development of the corpus callosum
.
J Neurosci
.
2001
;
21
(
8
):
2749
58
.
32.
Bartkowska
K
,
Koguc-Sobolewska
P
,
Djavadian
R
,
Turlejski
K
.
Astrocytes of the anterior commissure regulate the axon guidance pathways of newly generated neocortical neurons in the opossum Monodelphis domestica
.
Int J Mol Sci
.
2024
;
25
(
3
):
1476
.
33.
Falcone
C
,
Wolf-Ochoa
M
,
Amina
S
,
Hong
T
,
Vakilzadeh
G
,
Hopkins
WD
, et al
.
Cortical interlaminar astrocytes across the therian mammal radiation
.
J Comp Neurol
.
2019
;
527
(
10
):
1654
74
.
34.
Vizcaíno
SF
,
Loughry
WJ
.
The biology of the Xenarthra
.
University Press of Florida
;
2008
. Available from: https://cir.nii.ac.jp/crid/1130282269294548096 (Accessed: Dec 01, 2024).
35.
Seiffert
ER
.
A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence
.
BMC Evol Biol
.
2007
;
7
:
224
.
36.
Sherwood
CC
,
Stimpson
CD
,
Butti
C
,
Bonar
CJ
,
Newton
AL
,
Allman
JM
, et al
.
Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals
.
Brain Struct Funct
.
2009
;
213
(
3
):
301
28
.
37.
Krubitzer
L
,
Künzle
H
,
Kaas
J
.
Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi)
.
J Comp Neurol
.
1997
;
379
(
3
):
399
414
.
38.
Künzle
H
,
Rehkämper
G
.
Distribution of cortical neurons projecting to dorsal column nuclear complex and spinal cord in the hedgehog tenrec, echinops telfairi
.
Somatosens Mot Res
.
1992
;
9
(
3
):
185
97
.
39.
Stephan
H
,
Baron
G
,
Frahm
HD
.
Comparative brain characteristics
. In:
Stephan
H
,
Baron
G
,
Frahm
HD
, editors.
Insectivora: with a stereotaxic atlas of the hedgehog brain
.
New York, NY
:
Springer
;
1991
. p.
25
157
.
40.
Alpár
A
,
Künzle
H
,
Gärtner
U
,
Popkova
Y
,
Bauer
U
,
Grosche
J
, et al
.
Slow age-dependent decline of doublecortin expression and BrdU labeling in the forebrain from lesser hedgehog tenrecs
.
Brain Res
.
2010
;
1330
:
9
19
.
41.
Mack
AF
,
Künzle
H
,
Lange
M
,
Mages
B
,
Reichenbach
A
,
Härtig
W
.
Radial glial elements in the cerebral cortex of the lesser hedgehog tenrec
.
Brain Struct Funct
.
2018
;
223
(
9
):
3909
17
.
42.
Götz
M
,
Barde
Y-A
.
Radial glial cells: defined and MajorIntermediates between EmbryonicStem cells and CNS neurons
.
Neuron
.
2005
;
46
(
3
):
369
72
.
43.
Foley
NM
,
Mason
VC
,
Harris
AJ
,
Bredemeyer
KR
,
Damas
J
,
Lewin
HA
, et al
.
A genomic timescale for placental mammal evolution
.
Science
.
2023
;
380
(
6643
):
eabl8189
.
44.
Churchfield
S
.
The natural history of shrews
.
Comstock Pub. Associates
;
1990
.
45.
Lázaro
J
,
Hertel
M
,
Sherwood
CC
,
Muturi
M
,
Dechmann
DKN
.
Profound seasonal changes in brain size and architecture in the common shrew
.
Brain Struct Funct
.
2018
;
223
(
6
):
2823
40
.
46.
Olkowicz
S
,
Bartkowska
K
,
Rychlik
L
,
Turlejski
K
.
Apparent scarcity of glial fibrillary acidic protein expression in the brain of the pygmy shrew Sorex minutus as revealed by immunocytochemistry
.
Neurosci Lett
.
2004
;
368
(
2
):
205
10
.
47.
Rodríguez-Caro
RC
,
Morales-Reyes
Z
,
Aguión
A
,
Arias-Real
R
,
Arrondo
E
,
Aspillaga
E
, et al
.
The importance of locally sourced data in identifying population trends: insights from Iberian vertebrates
.
Biol Conservation
.
2024
;
298
:
110755
.
48.
Jones
MF
,
Li
Q
,
Ni
X
,
Beard
KC
.
The earliest Asian bats (Mammalia: Chiroptera) address major gaps in bat evolution
.
Biol Lett
.
2021
;
17
(
6
):
20210185
.
49.
Simmons
NB
,
Seymour
KL
,
Habersetzer
J
,
Gunnell
GF
.
Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation
.
Nature
.
2008
;
451
(
7180
):
818
21
.
50.
Jebb
D
,
Huang
Z
,
Pippel
M
,
Hughes
GM
,
Lavrichenko
K
,
Devanna
P
, et al
.
Six reference-quality genomes reveal evolution of bat adaptations
.
Nature
.
2020
;
583
(
7817
):
578
84
.
51.
Colombo
JA
,
Fuchs
E
,
Härtig
W
,
Marotte
LR
,
Puissant
V
.
‘Rodent-like’ and ‘primate-like’ types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study
.
Anat Embryol
.
2000
;
201
(
2
):
111
20
.
52.
Bairati
A
,
Tripoli
G
.
Ricerche morfologiche ed istochimiche sulla glia del nevrasse di vertebrati
.
Z Zellforsch Mikrosk Anat
.
1954
;
39
(
4
):
392
413
.
53.
Contu
P
.
Ricerche sulla glioarchitettonica dei vertebrati: Mammiferi (cetacei, edentati, roditori, insettivori, chirotteri, carnivori, ungulati, perissodattili, ungulati artiodattili, primati)
;
1954
. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ricerche+sulla+glioarchitettonica+dei+vertebrati:+Mammiferi+(cetacei,+edentati,+roditori,+insettivori,+chirotteri,+carnivori,+ungulati,+perissodattili,+ungulati+artiodattili,+primati)&btnG=
54.
Sullivan
SM
,
Björkman
ST
,
Miller
SM
,
Colditz
PB
,
Pow
DV
.
Structural remodeling of gray matter astrocytes in the neonatal pig brain after hypoxia/ischemia
.
Glia
.
2010
;
58
(
2
):
181
94
.
55.
Sullivan
SM
,
Björkman
ST
,
Miller
SM
,
Colditz
PB
,
Pow
DV
.
Morphological changes in white matter astrocytes in response to hypoxia/ischemia in the neonatal pig
.
Brain Res
.
2010
;
1319
:
164
74
.
56.
Williams
SM
,
Sullivan
RKP
,
Scott
HL
,
Finkelstein
DI
,
Colditz
PB
,
Lingwood
BE
, et al
.
Glial glutamate transporter expression patterns in brains from multiple mammalian species
.
Glia
.
2005
;
49
(
4
):
520
41
.
57.
Sullivan
SM
,
Lee
A
,
Björkman
ST
,
Miller
SM
,
Sullivan
RKP
,
Poronnik
P
, et al
.
Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP
.
J Biol Chem
.
2007
;
282
(
40
):
29414
23
.
58.
Lee
A
,
Lingwood
BE
,
Bjorkman
ST
,
Miller
SM
,
Poronnik
P
,
Barnett
NL
, et al
.
Rapid loss of glutamine synthetase from astrocytes in response to hypoxia: implications for excitotoxicity
.
J Chem Neuroanat
.
2010
;
39
(
3
):
211
20
.
59.
Purvis
EM
,
Fedorczak
N
,
Prah
A
,
Han
D
,
O’Donnell
JC
.
Porcine astrocytes and their relevance for translational neurotrauma research
.
Biomedicines
.
2023
;
11
(
9
):
2388
.
60.
Glezer
II
,
Jacobs
MS
,
Morgane
PJ
.
Ultrastructure of the blood-brain barrier in the dolphin (Stenella coeruleoalba)
.
Brain Res
.
1987
;
414
(
2
):
205
18
.
61.
Pritz-Hohmeier
S
,
Härtig
W
,
Behrmann
G
,
Reichenbach
A
.
Immunocytochemical demonstration of astrocytes and microglia in the whale brain
.
Neurosci Lett
.
1994
;
167
(
1–2
):
59
62
.
62.
Kang
H
,
Liu
Q
,
Seim
I
,
Zhang
W
,
Li
H
,
Gao
H
, et al
.
A genome and single-nucleus cerebral cortex transcriptome atlas of the short-finned pilot whale Globicephala macrorhynchus
.
Mol Ecol Resour
.
2023
;
23
(
5
):
1108
23
.
63.
Roboon
J
,
Hattori
T
,
Nguyen
DT
,
Ishii
H
,
Takarada-Iemata
M
,
Kannon
T
, et al
.
Isolation of ferret astrocytes reveals their morphological, transcriptional, and functional differences from mouse astrocytes
.
Front Cel Neurosci
.
2022
;
16
(
Oct
):
877131
.
64.
Tai
NC
,
Shinmyo
Y
,
Kawasaki
H
.
Astrocyte diversity in the ferret cerebrum revealed with astrocyte-specific genetic manipulation
.
Glia
.
2024
;
72
(
10
):
1862
73
.
65.
Kelley
KW
,
Nakao-Inoue
H
,
Molofsky
AV
,
Oldham
MC
.
Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes
.
Nat Neurosci
.
2018
;
21
(
9
):
1171
84
.
66.
Zenker
J
,
Stettner
M
,
Ruskamo
S
,
Domènech-Estévez
E
,
Baloui
H
,
Médard
JJ
, et al
.
A role of peripheral myelin protein 2 in lipid homeostasis of myelinating schwann cells
.
Glia
.
2014
;
62
(
9
):
1502
12
.
67.
Kim
S
,
Lee
D
,
Song
JC
,
Cho
SJ
,
Yun
SM
,
Koh
YH
, et al
.
NDP52 associates with phosphorylated tau in brains of an Alzheimer disease mouse model
.
Biochem Biophys Res Commun
.
2014
;
454
(
1
):
196
201
.
68.
Till
A
,
Lipinski
S
,
Ellinghaus
D
,
Mayr
G
,
Subramani
S
,
Rosenstiel
P
, et al
.
Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease
.
Autophagy
.
2013
;
9
(
8
):
1256
7
.
69.
Zhang
Y
,
Sloan
SA
,
Clarke
LE
,
Caneda
C
,
Plaza
CA
,
Blumenthal
PD
, et al
.
Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse
.
Neuron
.
2016
;
89
(
1
):
37
53
.
70.
Grosche
J
,
Kettenmann
H
,
Reichenbach
A
.
Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons
.
J Neurosci Res
.
2002
;
68
(
2
):
138
49
.
71.
Grosche
J
,
Matyash
V
,
Möller
T
,
Verkhratsky
A
,
Reichenbach
A
,
Kettenmann
H
.
Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells
.
Nat Neurosci
.
1999
;
2
(
2
):
139
43
.
72.
Zhang
C
,
Hua
T
,
Zhu
Z
,
Luo
X
.
Age-related changes of structures in cerebellar cortex of cat
.
J Biosci
.
2006
;
31
(
1
):
55
60
.
73.
Rochefort
N
,
Quenech’du
N
,
Ezan
P
,
Giaume
C
,
Milleret
C
.
Postnatal development of GFAP, connexin43 and connexin30 in cat visual cortex
.
Brain Res Dev Brain Res
.
2005
;
160
(
2
):
252
64
.
74.
Dyck
RH
,
Van Eldik
LJ
,
Cynader
MS
.
Immunohistochemical localization of the S-100β protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia
.
Developmental Brain Res
.
1993
;
72
(
2
):
181
92
.
75.
Philips
RT
,
Sur
M
,
Chakravarthy
VS
.
The influence of astrocytes on the width of orientation hypercolumns in visual cortex: a computational perspective
.
PLoS Comput Biol
.
2017
;
13
(
10
):
e1005785
.
76.
Müller
CM
.
Astrocytes in cat visual cortex studied by GFAP and S-100 immunocytochemistry during postnatal development
.
J Comp Neurol
.
1992
;
317
(
3
):
309
23
.
77.
Luskin
MB
,
Shatz
CJ
.
Neurogenesis of the cat’s primary visual cortex
.
J Comp Neurol
.
1985
;
242
(
4
):
611
31
.
78.
Rakic
P
.
Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition
.
Science
.
1974
;
183
(
4123
):
425
7
.
79.
Engel
AK
,
Müller
CM
.
Postnatal development of vimentin-immunoreactive radial glial cells in the primary visual cortex of the cat
.
J Neurocytol
.
1989
;
18
(
4
):
437
50
.
You do not currently have access to this content.