Background: Glial cells are important elements constituting the nervous systems and playing important roles. The characterization and exploration about their role are largely based on studies in mammals. Early in the history of modern science (in the distant 1896) is traced the first report of the existence of “bushy” glia cells in the brain of Octopus vulgaris. Subsequent studies focused on the nervous system of octopus and other cephalopods have largely ignored them, in favor of neuronal cells. As a result, there is a notable gap in scientific literature regarding a thorough and comprehensive description of the tissues that support and nourish nerve cells in cephalopods. Summary: This review provides an overview of the intriguing world of glial cells in marine invertebrates, with a focus on octopus and allies. It highlights their significance and complexity while exploring functional analogies with mammalian glial cells. Key Messages: This review emphasizes the need for further research to understand the interaction between nerve cells and glial elements in cephalopods. Understanding these interactions can contribute to our knowledge of the evolution of complex cognition.

1.
Nakajima
R
,
Shigeno
S
,
Zullo
L
,
De Sio
F
,
Schmidt
MR
.
Cephalopods between science, art, and engineering: a contemporary synthesis
.
Front Commun
.
2018
;
3
:
20
.
2.
McClain
CR
.
Likes, comments, and shares of marine organism imagery on Facebook
.
PeerJ
.
2019
;
7
:
e6795
.
3.
Albertin
CB
,
Medina-Ruiz
S
,
Mitros
T
,
Schmidbaur
H
,
Sanchez
G
,
Wang
ZY
, et al
.
Genome and transcriptome mechanisms driving cephalopod evolution
.
Nat Commun
.
2022
;
13
(
1
):
2427
.
4.
Albertin
CB
,
Simakov
O
.
Cephalopod biology: at the intersection between genomic and organismal novelties
.
Annu Rev Anim Biosci
.
2020
;
8
(
1
):
71
90
.
5.
Hanlon
RT
,
Messenger
JB
Cephalopod behaviour
. 2nd ed.
Cambridge
:
Cambridge University Press
;
2018
.
6.
Imperadore
P
,
Fiorito
G
.
Cephalopod Tissue Regeneration: consolidating over a century of knowledge
.
Front Physiol
.
2018
;
9
:
593
.
7.
De Sio
F
,
Imperadore
P
.
Deciphering regeneration through non-model animals: a century of experiments on cephalopod mollusks and an outlook at the future
.
Front Cell Dev Biol
.
2022
;
10
:
1072382
.
8.
Marini
G
,
De Sio
F
,
Ponte
G
,
Fiorito
G
.
Behavioral analysis of learning and memory in cephalopods
. In:
Byrne
JH
, editor.
Learning and memory: a comprehensive reference
. 2nd ed.
Amsterdam, The Netherlands
:
Academic Press, Elsevier
;
2017
. p.
441
62
.
9.
Ponte
G
,
Chiandetti
C
,
Edelman
DB
,
Imperadore
P
,
Pieroni
EM
,
Fiorito
G
.
Cephalopod behavior: from neural plasticity to consciousness
.
Front Syst Neurosci
.
2022
;
15
:
787139
.
10.
Packard
A
.
Cephalopods and fish: the limits of convergence
.
Biol Rev
.
1972 1972
;
47
(
2
):
241
307
.
11.
Shigeno
S
,
Andrews
PLR
,
Ponte
G
,
Fiorito
G
.
Cephalopod brains: an overview of current knowledge to facilitate comparison with vertebrates
.
Front Physiol
.
2018
;
9
:
952
.
12.
Young
JZ
.
Computation in the learning system of cephalopods
.
Biol Bull
.
1991
;
180
(
2
):
200
8
.
13.
Young
JZ
.
Multiple matrices in the memory system of Octopus
. In:
Abbott
JN
,
Williamson
R
,
Maddock
L
, editors.
Cephalopod neurobiology
.
Oxford
:
Oxford University Press
;
1995
. p.
431
43
.
14.
Kandel
ER
.
Behavioral Biology of Aplysia. A contribution to the comparative study of opisthobranch molluscs
.
San Francisco
:
W.H. Freeman and Company
;
1979
.
15.
Kandel
ER
,
Dudai
Y
,
Mayford
MR
.
The molecular and systems biology of memory
.
Cell
.
2014
;
157
(
1
):
163
86
.
16.
Kandel
ER
,
Kupfermann
I
.
The functional organization of invertebrate ganglia
.
Annu Rev Physiol
.
1970
;
32
(
1
):
193
258
.
17.
Schnell
AK
,
Amodio
P
,
Boeckle
M
,
Clayton
NS
.
How intelligent is a cephalopod? Lessons from comparative cognition
.
Biol Rev
.
2021
;
96
(
1
):
162
78
.
18.
Hochner
B
,
Shomrat
T
.
The neurophysiological basis of learning and memory in advanced invertebrates the Octopus and the cuttlefish
.
Invertebrate Learn Mem
.
2013
;
22
:
303
17
.
19.
Hochner
B
,
Shomrat
T
,
Fiorito
G
.
The octopus: a model for a comparative analysis of the evolution of learning and memory mechanisms
.
Biol Bull
.
2006
;
210
(
3
):
308
17
.
20.
Shomrat
T
,
Graindorge
N
,
Bellanger
C
,
Fiorito
G
,
Loewenstein
Y
,
Hochner
B
.
Alternative sites of synaptic plasticity in two homologous “Fan-out fan-in” learning and memory networks
.
Curr Biol
.
2011
;
21
:
1773
82
.
21.
Shomrat
T
,
Zarrella
I
,
Fiorito
G
,
Hochner
B
.
The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory
.
Curr Biol
.
2008
;
18
(
5
):
337
42
.
22.
Turchetti-Maia
A
,
Shomrat
T
,
Hochner
B
.
The vertical lobe of cephalopods. A brain structure ideal for exploring the mechanisms of complex forms of learning and memory
. In:
Byrne
JJ
, editor.
The oxford handbook of invertebrate neurobiology
.
Oxford, UK
:
Oxford University Press
;
2017
. p.
1
27
.
23.
Gray
EG
,
Young
JZ
.
Electron microscopy of synaptic structure of Octopus brain
.
J Cell Biol
.
1964
;
21
(
1
):
87
103
.
24.
Maldonado
H
.
The general amplification function of the vertical lobe in Octopus vulgaris. Journal of Comparative Physiology A: neuroethology, Sensory
.
Z Vergl Physiol
.
1963
;
47
(
3
):
215
29
.
25.
Maldonado
H
.
The positive and negative learning process in Octopus vulgaris Lamarck. Influence of the vertical and median superior frontal lobes
.
Z Vergl Physiol
.
1965
;
51
(
3
):
185
203
.
26.
Ponte
G
,
Fiorito
G
. Immunohistochemical analysis of neuronal networks in the nervous system of Octopus vulgaris. In:
Merighi
A
,
Lossi
L
, eds.
Neuromethods
.
SPRINGER SCIENCE BUSINESS MEDIA, LLC
;
2015
. p.
61
77
.
27.
Shomrat
T
,
Turchetti-Maia
AL
,
Stern-Mentch
N
,
Basil
JA
,
Hochner
B
.
The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems
.
J Comp Physiol A
.
2015
;
201
(
9
):
947
56
.
28.
Petrosino
G
,
Ponte
G
,
Volpe
M
,
Zarrella
I
,
Ansaloni
F
,
Langella
C
, et al
.
Identification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain
.
BMC Biol
.
2022
;
20
(
1
):
116
.
29.
Styfhals
R
,
Seuntjens
E
,
Simakov
O
,
Sanges
R
,
Fiorito
G
.
In silico identification and expression of protocadherin gene family in Octopus vulgaris
.
Front Physiol
.
2018
;
9
:
1905
.
30.
Styfhals
R
,
Zolotarov
G
,
Hulselmans
G
,
Spanier
KI
,
Poovathingal
S
,
Elagoz
AM
, et al
.
Cell type diversity in a developing octopus brain
.
Nat Commun
.
2022
;
13
(
1
):
7392
.
31.
Hochner
B
,
Brown
ER
,
Langella
M
,
Shomrat
T
,
Fiorito
G
.
A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation
.
J Neurophysiol
.
2003
;
90
(
5
):
3547
54
.
32.
O’Brien
CE
,
Ponte
G
,
Fiorito
G
.
Octopus
. In:
Choe
JC
, editor.
Encyclopedia of animal behavior
. Second Edition.
Oxford
:
Academic Press
;
2019
. p.
142
8
.
33.
Albertin
CB
,
Simakov
O
,
Mitros
T
,
Wang
ZY
,
Pungor
JR
,
Edsinger-Gonzales
E
, et al
.
The octopus genome and the evolution of cephalopod neural and morphological novelties
.
Nature
.
2015
;
524
(
7564
):
220
4
.
34.
Baden
T
,
Briseño
J
,
Coffing
G
,
Cohen-Bodénès
S
,
Courtney
A
,
Dickerson
D
, et al
.
Cephalopod-omics: emerging fields and technologies in cephalopod biology
.
Integr Comp Biol
.
2023
;
63
(
6
):
1226
39
.
35.
Destanović
D
,
Schultz
DT
,
Styfhals
R
,
Cruz
F
,
Gómez-Garrido
J
,
Gut
M
, et al
.
A chromosome-level reference genome for the common octopus, Octopus vulgaris (Cuvier, 1797)
.
G3
.
2023
;
13
(
12
):
10
.
36.
Ritschard
EA
,
Fitak
RR
,
Simakov
O
,
Johnsen
S
.
Genomic signatures of G-protein-coupled receptor expansions reveal functional transitions in the evolution of cephalopod signal transduction
.
Proc Biol Sci
.
2019
;
286
(
1897
):
20182929
.
37.
Ritschard
EA
,
Whitelaw
B
,
Albertin
CB
,
Cooke
IR
,
Strugnell
JM
,
Simakov
O
.
Coupled genomic evolutionary histories as signatures of organismal innovations in cephalopods: Co-evolutionary signatures across levels of genome organization may shed light on functional linkage and origin of cephalopod novelties
.
Bioessays
.
2019
;
41
(
12
):
1900073
.
38.
Nieder
A
.
Convergent circuit computation for categorization in the brains of primates and songbirds
.
Cold Spring Harb Perspect Biol
.
20232023
;
15
(
12
):
a041526
.
39.
Young
JZ
.
The number and sizes of nerve cells in Octopus
.
Proc Zool Soc Lond
.
1963
;
140
(
2
):
229
54
.
40.
Banerjee
S
,
Bhat
MA
.
Glial ensheathment of peripheral axons in Drosophila
.
J Neurosci Res
.
2008
;
86
(
6
):
1189
98
.
41.
Singhvi
A
,
Shaham
S
.
Glia-neuron interactions in Caenorhabditis elegans
. In:
Roska
B
,
Zoghbi
HY
, editors.
Annual Review of Neuroscience, Vol 42. Annual Review of Neuroscience
.
Palo Alto
:
Annual Reviews
;
2019
. p.
149
68
,
42.
Bullock
T
,
Horridge
GA
.
Structure and function in the nervous systems of invertebrates
.
San Francisco
:
Freeman
;
1965
.
43.
Hartline
DK
.
The evolutionary origins of glia
.
Glia
.
2011
;
59
(
9
):
1215
36
.
44.
Frederickson
RCA
,
Silver
J
.
Glial cells: the unsung heroes of the brain one company's view
.
Biotechnology
.
1991
;
9
(
11
):
1042
9
.
45.
Stoklund Dittlau
K
,
Freude
K
.
Astrocytes: the stars in neurodegeneration
.
Biomolecules
.
2024
;
14
(
3
):
289
.
46.
Castelfranco
AM
,
Hartline
DK
.
The evolution of vertebrate and invertebrate myelin: a theoretical computational study
.
J Comput Neurosci
.
2015
;
38
(
3
):
521
38
.
47.
Ibrahim
G
,
Luisetto
M
,
Latyshev
O
.
Glial cells in the posterior sub-esophageal mass of the brain in Sepia officinalis (Linnaeus, 1758) (decapodiformes–sepiida): ultrastructure and cytochemical studies
.
Invert Neurosci
.
2020
;
20
(
4
):
16
.
48.
Hines
JH
.
Evolutionary origins of the oligodendrocyte cell type and adaptive myelination
.
Front Neurosci
.
2021
;
15
:
15
2021
.
49.
Paemen
LR
,
Porchethennere
E
,
Masson
M
,
Leung
MK
,
Hughes
TK
,
Stefano
GB
.
Glial localization of interleukin-1α in invertebrate ganglia
.
Cell Mol Neurobiol
.
1992
;
12
(
5
):
463
72
.
50.
Hollmann
G
,
da Silva
PGC
,
Linden
R
,
Allodi
S
.
Cell proliferation in the central nervous system of an adult semiterrestrial crab
.
Cell Tissue Res
.
2021
;
384
(
1
):
73
85
.
51.
Harrison
JB
,
Lane
NJ
.
Lack of restriction at the blood-brain interface in Limulus despite atypical junctional arrangements
.
J Neurocytol
.
1981
;
10
(
2
):
233
50
.
52.
Hermans
CO
.
Fine structure of the segmental ocelli of Armandia brevis (Polychaeta: opheliidae)
.
Z Zellforsch Mikrosk Anat
.
1969
;
96
(
3
):
361
71
.
53.
Purschke
G
.
Ultrastructure of the “statocysts” in Protodrilus species (Polychaeta): reconstruction of the cellular organization with morphometric data from receptor cells
.
Zoomorphology
.
1990
;
110
(
2
):
91
104
.
54.
Wells
J
,
Besso
JA
,
Boldosser
WG
,
Parsons
RL
.
The fine structure of the nerve cord of Myxicola infundibulum (annelida, polychaeta)
.
Z Zellforsch Mikrosk Anat
.
1972
;
131
(
2
):
141
8
.
55.
Baskin
DG
.
Fine structure, functional organization and supportive role of neuroglia in Nereis
.
Tissue Cell
.
1971
;
3
(
4
):
579
87
.
56.
Van Harreveld
A
,
Khattab
FI
,
Steiner
J
.
Extracellular space in the central nervous system of the leech, Mooreobdella fervida
.
J Neurobiol
.
1969
;
1
(
1
):
23
40
.
57.
Le Marrec-Croq
F
,
Drago
F
,
Vizioli
J
,
Sautière
PE
,
Lefebvre
C
.
The leech nervous system: a valuable model to study the microglia involvement in regenerative processes
.
Clin Dev Immunol
.
2013
;
2013
:
274019
.
58.
Florim da Silva
S
,
Taffarel
M
,
Allodi
S
.
Crustacean visual system: an investigation on glial cells and their relation to extracellular matrix
.
Biol Cell
.
2001
;
93
(
5
):
293
9
.
59.
Hámori
J
,
Horridge
GA
.
The lobster optic lamina IV: glial cells
.
J Cell Sci
.
1966
;
1
(
3
):
275
80
.
60.
Chaigneau
J
,
Besse
C
,
Jaros
PP
,
Martin
G
,
Wägele
JW
,
Willig
A
.
Organ of Bellonci of an Antarctic crustacean, the marine isopod Glyptonotus antarcticus
.
J Morphol
.
1991
;
207
(
2
):
119
28
.
61.
Brenneis
G
,
Stollewerk
A
,
Scholtz
G
.
Embryonic neurogenesis in Pseudopallene sp (Arthropoda, Pycnogonida) includes two subsequent phases with similarities to different arthropod groups
.
EvoDevo
.
2013
;
4
(
1
):
32
.
62.
Heuser
JE
,
Doggenweiler
CF
.
The fine structural organization of nerve fibers, sheaths, and glial cells in the prawn, Palaemonetes vulgaris
.
J Cell Biol
.
1966
;
30
(
2
):
381
403
.
63.
Abbott
NJ
.
The organization of the cerebral ganglion in the shore crab, Carcinus maenas
.
Z Zellforsch Mikrosk Anat
.
1971
;
120
(
3
):
401
19
.
64.
Temereva
EN
,
Kuzmina
TV
.
The nervous system of the most complex lophophore provides new insights into the evolution of Brachiopoda
.
Sci Rep
.
2021
;
11
(
1
):
16192
.
65.
Temereva
EN
,
Tsitrin
EB
.
Modern data on the innervation of the lophophore in Lingula anatina (brachiopoda) support the monophyly of the lophophorates
.
PLoS One
.
2015
;
10
(
4
):
e0123040
.
66.
Gruhl
A
,
Bartolomaeus
T
.
Ganglion ultrastructure in phylactolaemate bryozoa: evidence for a neuroepithelium
.
J Morphol
.
2008
;
269
(
5
):
594
603
.
67.
Mashanov
VS
,
Zueva
OR
,
García-Arrarás
JE
.
Transcriptomic changes during regeneration of the central nervous system in an echinoderm
.
BMC Genomics
.
2014
;
15
:
21
.
68.
Miguel-Ruiz
JES
,
Maldonado-Soto
AR
,
García-Arrarás
JE
.
Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
.
BMC Dev Biol
.
2009
;
9
:
19
.
69.
Ortega
A
,
Olivares-Bañuelos
TN
.
Neurons and glia cells in marine invertebrates: an update
.
Front Neurosci
.
2020
;
14
:
14
.
70.
Olivares-Bañuelos
TN
,
Ortega
A
.
Editorial: marine invertebrates: neurons, glia, and neurotransmitters
.
Front Neural Circuits
.
2023
;
17
:
1327991
.
71.
Mashanov
V
,
Ademiluyi
S
,
Jacob Machado
D
,
Reid
R
,
Janies
D
.
Echinoderm radial glia in adult cell renewal, indeterminate growth, and regeneration
.
Front Neural Circuits
.
2023
;
17
:
11
.
72.
Flammang
P
,
Jangoux
M
.
Functional morphology of coronal and peristomeal podia in Sphaerechinus granularis (Echinodermata, Echinoida)
.
Zoomorphology
.
1993
;
113
(
1
):
47
60
.
73.
Borisanova
AO
,
Malakhov
VV
,
Temereva
EN
.
The neuroanatomy of Barentsia discreta (Entoprocta, Coloniales) reveals significant differences between bryozoan and entoproct nervous systems
.
Front Zool
.
2019
;
16
:
9
.
74.
Teuchert
G
.
The ultrastructure of the marine gastrotrich Turbanella cornuta Remane (Macrodasyoidea) and its functional and phylogenetical importance
.
Zoomorphologie
.
1977
;
88
(
3
):
189
246
.
75.
Elekes
K
.
Autoradiographic localization of monoamine uptake in the central nervous system of a marine mollusc (Mactra stultorum L., pelecypoda)
.
Neuroscience
.
1978
;
3
(
1
):
49
58
.
76.
Willmer
PG
.
Volume regulation and solute balance in the nervous tissue of an osmoconforming bivalve (Mytilus edulis)
.
J Exp Biol
.
1978
;
77
(
1
):
157
79
.
77.
Goldstein
RS
,
Weiss
KR
,
Schwartz
JH
.
Intraneuronal injection of horseradish peroxidase labels glial cells associated with the axons of the giant metacerebral neuron of Aplysia
.
J Neurosci
.
1982
;
2
(
11
):
1567
77
.
78.
Maggio
K
,
Watrin
A
,
Keicher
E
,
Nicaise
G
,
Hernandeznicaise
ML
.
Ca(2+)-ATPase and Mg(2+)-ATPase in Aplysia glial and interstitial cells: an EM cytochemical study
.
J Histochem Cytochem
.
1991
;
39
(
12
):
1645
58
.
79.
Alesci
A
,
Fumia
A
,
Mastrantonio
L
,
Marino
S
,
Miller
A
,
Albano
M
.
Functional adaptations of hemocytes of Aplysia depilans (gmelin, 1791) and their putative role in neuronal regeneration
.
Fishes
.
2024
;
9
(
1
):
32
.
80.
Moroz
LL
,
Edwards
JR
,
Puthanveettil
SV
,
Kohn
AB
,
Ha
T
,
Heyland
A
, et al
.
Neuronal transcriptome of Aplysia: neuronal compartments and circuitry
.
Cell
.
2006
;
127
(
7
):
1453
67
.
81.
Sun
XJ
,
Li
L
,
Wu
BA
,
Ge
JL
,
Zheng
YX
,
Yu
T
, et al
.
Cell type diversity in scallop adductor muscles revealed by single-cell RNA-Seq
.
Genomics
.
2021
;
113
(
6
):
3582
98
.
82.
Beckers
P
,
Faller
S
,
Loesel
R
.
Lophotrochozoan neuroanatomy: an analysis of the brain and nervous system of Lineus viridis (Nemertea) using different staining techniques
.
Front Zool
.
2011
;
8
:
17
.
83.
Temereva
EN
,
Malakhov
VV
.
Microscopic anatomy and ultrastructure of the nervous system of Phoronopsis harmeri Pixell, 1912 (Lophophorata: phoronida)
.
Russ J Mar Biol
.
2009
;
35
(
5
):
388
404
.
84.
Temereva
EN
.
Development and structure of the nervous system in phoronids: evolutionary significance
.
Neurosci Behav Physiol
.
2022
;
52
(
1
):
77
85
.
85.
Colonnier
M
,
Tremblay
JP
,
McLennan
H
.
Synaptic contacts on glial cells in the abdominal ganglion of Aplysia californica
.
J Comp Neurol
.
1979
;
188
(
3
):
391
400
.
86.
Keicher
E
,
Maggio
K
,
Hernandeznicaise
ML
,
Nicaise
G
.
The abundance of Aplysia gliagrana depends on Ca2+ and/or Na+ concentrations in sea-water
.
Glia
.
1992
;
5
(
2
):
131
8
.
87.
Freeman
MR
.
Drosophila central nervous system glia
.
Cold Spring Harb Perspect Biol
.
20152015
;
7
(
11
):
a020552
.
88.
Corty
MM
,
Coutinho-Budd
J
.
Drosophila glia take shape to sculpt the nervous system
.
Curr Opin Neurobiol
.
2023
;
79
:
102689
.
89.
Górska-Andrzejak
J
.
Glia-related circadian plasticity in the visual system of Diptera
.
Front Physiol
.
2013
;
4
:
36
.
90.
Limmer
S
,
Weiler
A
,
Volkenhoff
A
,
Babatz
F
,
Klämbt
C
.
The Drosophila blood-brain barrier: development and function of a glial endothelium
.
Front Neurosci
.
2014
;
8
:
365
.
91.
Fan
JL
,
Ji
TT
,
Wang
K
,
Huang
JC
,
Wang
MQ
,
Manning
L
, et al
.
A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in Caenorhabditis elegans
.
Elife
.
2020
;
9
:
e55890
.
92.
Stout
RF
,
Verkhratsky
A
,
Parpura
V
.
Caenorhabditis elegans glia modulate neuronal activity and behavior
.
Front Cell Neurosci
.
2014
;
8
:
67
.
93.
Bianchi
LC
.
C. elegans glia are bona fide odorant receptor cells
.
Neuron
.
2020
;
108
(
4
):
588
9
.
94.
Frakes
AE
,
Metcalf
MG
,
Tronnes
SU
,
Bar-Ziv
R
,
Durieux
J
,
Gildea
HK
, et al
.
Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in C. elegans
.
Science
.
2020
;
367
(
6476
):
436
40
.
95.
Oikonomou
G
,
Shaham
S
.
The glia of Caenorhabditis elegans
.
Glia
.
2011
;
59
(
9
):
1253
63
.
96.
Fields
RD
.
The Brain Learns in Unexpected Ways Neuroscientists have discovered a set of unfamiliar cellular mechanisms for making fresh memories
.
Sci Am
.
2020
;
322
(
3
):
74
9
.
97.
O'Brown
NM
,
Pfau
SJ
,
Gu
CH
.
Bridging barriers: a comparative look at the blood-brain barrier across organisms
.
Genes Dev
.
2018
;
32
(
7–8
):
466
78
.
98.
Falcone
C
.
Evolution of astrocytes: from invertebrates to vertebrates
.
Front Cell Dev Biol
.
2022
;
10
:
931311
.
99.
Nicaise
G
.
Détection histochimique de cholinestérases dans les cellules gliales et interstitielles des Doridiens
.
CR Soc Biol
.
1969
;
163
:
2600
4
.
100.
Newman
G
,
Kerkut
GA
,
Walker
RJ
.
The structure of the brain of Helix aspersa. Electron microscope localization of cholinesterase and amines
.
Symp Zool Soc Lond
.
1968
;
22
:
1
17
.
101.
Nagy
IZ
,
Salanki
J
.
Structural changes in the adductors of the fresh-water mussel (Anodonta cygnea L
.
Acta Biol Acad Sci Hung
.
1965
;
15
:
311
20
.
102.
Stephens
PR
,
Young
JZ
.
The glio-vascular system of cephalopods
.
Phil Trans Roy Soc Lond B Biol Sci
.
1969
;
255
(
797
):
1
12
.
103.
Cajal
SR
. Contribución al conocimiento de la retina y centros ópticos de los cefalópodos.
1917
.
104.
Young
JZ
.
The optic lobes of Octopus vulgaris
.
Phil Trans Roy Soc Lond B Biol Sci
.
1962
;
245
(
718
):
19
58
.
105.
Bogoraze
D
,
Cazal
P
.
Recherches Histologiques sur le Système Nerveux du Poulpe. Les neurones, le tissue interstitiel et les éléments neurocrines
.
Arch de Zoologie Expérimentale Générale
.
1944
;
83
:
413
44
.
106.
Abbott
NJ
,
Pichon
Y
.
The glial blood-brain barrier of crustacea and cephalopods: a review
.
J Physiol
.
1987
;
82
(
4
):
304
13
.
107.
Gray
EG
,
Young
JZ
.
Electron microscopy of the glio-vascular organization of the brain of octopus
.
Phil Trans Roy Soc Lond B Biol Sci
.
1969
;
255
(
797
):
13
32
.
108.
Case
NM
,
Gray
EG
,
Young
JZ
.
Ultrastructure and synaptic relations in the optic lobe of the brain of Eledone and Octopus
.
J Ultrastruct Res
.
1972
;
39
(
1
):
115
23
.
109.
Gray
EG
,
Young
JZ
.
The fine structure of the vertical lobe of Octopus brain
.
Philos Trans R Soc Lond B Biol Sci
.
1970
;
258
(
827
):
379
94
.
110.
Young
JZ
The anatomy of the nervous system of Octopus vulgaris
.
London, UK
:
Oxford University Press
;
1971
.
111.
Barber
VC
,
Graziadei
P
.
The fine sturcture of cephalopod blood vessels. II. The vessels of the nervous system
.
Z Zellforsch Mikrosk Anat
.
1967
;
77
(
2
):
147
61
.
112.
Cloney
RA
,
Brocco
SL
.
Chromatophore organs, reflector cells, iridocytes and leucophores in cephalopods
.
Am Zool
.
1983
;
23
(
3
):
581
92
.
113.
Patterson
JA
.
A modified, prefixed, Golgi-rapid technique for the cephalopod retina
.
J Neurosci Methods
.
1985
;
12
(
3
):
219
25
.
114.
Imperadore
P.
Nerve regeneration in the cephalopod mollusc Octopus vulgaris: a journey into morphological, cellular and molecular changes including epigenetic modifications. Dipartimento di Biologia, Ecologia e Scienze Della Terra
.
Arcavacata di Rende
,
Cosenza, Italy
: Università della Calabria.
2017
. p.
236
.
115.
Imperadore
P
,
Parazzoli
D
,
Oldani
A
,
Duebbert
M
,
Büschges
A
,
Fiorito
G
.
From injury to full repair: nerve regeneration and functional recovery in the common octopus, Octopus vulgaris
.
J Exp Biol
.
2019
;
222
(
Pt 19
):
jeb209965
.
116.
Imperadore
P
,
Shah
SB
,
Makarenkova
HP
,
Fiorito
G
.
Nerve degeneration and regeneration in the cephalopod mollusc Octopus vulgaris: the case of the pallial nerve
.
Sci Rep
.
2017
;
7
:
46564
.
117.
Bellows
CG
.
Histology of the central nervous system of the squid, Illex illecobrosus illecobrosus (Leseur)
.
Memorial University of Newfoundland
;
1968
.
118.
Villegas
J
.
Learning from the axon-schwann cell relationships of the giant nerve fiber of the squid
. In:
Vernadakis
A
,
Roots
BI
, editors.
Neuron—glia interrelations during phylogeny: II plasticity and regeneration
.
Totowa, NJ
:
Humana Press
;
1995
. p.
95
127
.
119.
Young
JZ
.
The nervous system of Loligo. V. The vertical lobe complex
.
Philos Trans R Soc Lond B Biol Sci
.
1979
;
285
(
1009
):
311
54
.
120.
Inoue
I
,
Tsutsui
I
,
Abbott
NJ
,
Brown
ER
.
Ionic currents in isolated and in situ squid Schwann cells
.
J Physiol
.
2002
;
541
(
Pt 3
):
769
78
.
121.
Lieberman
EM
,
Abbott
NJ
,
Hassan
S
.
Evidence that glutamate mediates Axon-to-Schwann cell signaling in the squid
.
Glia
.
1989
;
2
(
2
):
94
102
.
You do not currently have access to this content.