Background: Astrocytes are a subtype of glial cells, which are non-neuronal cells that do not produce action potentials. Rather, astrocytes are involved in various functions vital to a functioning brain including nutrient supply to neuronal cells, blood-brain barrier maintenance, regulation of synaptic transmission, and repair following CNS injury. Summary: While astrocytes have been examined extensively in rodents, it is now clear that there is a large amount of astrocyte heterogeneity and increased complexity in mammals and primates. Astrocytes have expanded in the human lineage with respect to density, soma volume, and the ratio of astrocytes to total glial cells. The human prefrontal cortex also possesses an overall increased glia:neuron ratio relative to other primates, coinciding with allometric expectations based on overall brain size. Key Messages: What are the underlying changes in astrocytes in primate evolution? For this review, we will focus on the evolution of gene expression and gene regulation in astrocytes as a read out of the phenotypic changes seen in cellular morphology. This is an exciting time to understand this cell type in a more dynamic and complex way with new technologies such as induced pluripotent stem cells and single-cell RNA sequencing. Furthermore, understanding the evolution of astrocytes across primates will help explain their role in neurological disease as alterations in astrocyte function are implicated in many neurodegenerative states such as Alzheimer’s disease and Parkinson’s disease.

1.
Freeman
MR
.
Specification and morphogenesis of astrocytes
.
Science
.
2010
;
330
(
6005
):
774
8
.
2.
Sherwood
CC
,
Stimpson
CD
,
Raghanti
MA
,
Wildman
DE
,
Uddin
M
,
Grossman
LI
, et al
.
Evolution of increased glia-neuron ratios in the human frontal cortex
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
37
):
13606
11
.
3.
Rappold
PM
,
Tieu
K
.
Astrocytes and therapeutics for Parkinson's disease
.
Neurotherapeutics
.
2010
;
7
(
4
):
413
23
.
4.
Li
J
,
Pan
L
,
Pembroke
WG
,
Rexach
JE
,
Godoy
MI
,
Condro
MC
, et al
.
Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes
.
Nat Commun
.
2021
;
12
(
1
):
3958
.
5.
Varki
A
,
Geschwind
DH
,
Eichler
EE
.
Explaining human uniqueness: genome interactions with environment, behaviour and culture
.
Nat Rev Genet
.
2008
;
9
(
10
):
749
63
.
6.
Oberheim
NA
,
Takano
T
,
Han
X
,
He
W
,
Lin
JH
,
Wang
F
, et al
.
Uniquely hominid features of adult human astrocytes
.
J Neurosci
.
2009
;
29
(
10
):
3276
87
.
7.
Oberheim
NA
,
Goldman
SA
,
Nedergaard
M
.
Heterogeneity of astrocytic form and function
.
Methods Mol Biol
.
2012
;
814
:
23
45
.
8.
Sosunov
AA
,
Wu
X
,
Tsankova
NM
,
Guilfoyle
E
,
McKhann
GM
2nd
,
Goldman
JE
.
Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain
.
J Neurosci
.
2014
;
34
(
6
):
2285
98
.
9.
Falcone
C
,
Wolf-Ochoa
M
,
Amina
S
,
Hong
T
,
Vakilzadeh
G
,
Hopkins
WD
, et al
.
Cortical interlaminar astrocytes across the therian mammal radiation
.
J Comp Neurol
.
2019
;
527
(
10
):
1654
74
.
10.
Oberheim
NA
,
Wang
X
,
Goldman
S
,
Nedergaard
M
.
Astrocytic complexity distinguishes the human brain
.
Trends Neurosci
.
2006
;
29
(
10
):
547
53
.
11.
Falcone
C
,
Martinez-Cerdeno
V
.
Astrocyte evolution and human specificity
.
Neural Regen Res
.
2023
;
18
(
1
):
131
2
.
12.
Falcone
C
,
McBride
EL
,
Hopkins
WD
,
Hof
PR
,
Manger
PR
,
Sherwood
CC
, et al
.
Redefining varicose projection astrocytes in primates
.
Glia
.
2022
;
70
(
1
):
145
54
.
13.
Falcone
C
,
Penna
E
,
Hong
T
,
Tarantal
AF
,
Hof
PR
,
Hopkins
WD
, et al
.
Cortical interlaminar astrocytes are generated prenatally, mature postnatally, and express unique markers in human and nonhuman primates
.
Cereb Cortex
.
2021
;
31
(
1
):
379
95
.
14.
Beard
E
,
Lengacher
S
,
Dias
S
,
Magistretti
PJ
,
Finsterwald
C
.
Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives
.
Front Physiol
.
2021
;
12
:
825816
.
15.
Bauernfeind
AL
,
Soderblom
EJ
,
Turner
ME
,
Moseley
MA
,
Ely
JJ
,
Hof
PR
, et al
.
Differential gene and protein expression in the human and chimpanzee brain: a comparison using high throughput techniques
.
Genome Biol Evol
.
2015
;
7
(
8
):
2276
88
.
16.
Khrameeva
E
,
Kurochkin
I
,
Han
D
,
Guijarro
P
,
Kanton
S
,
Santel
M
, et al
.
Single-cell-resolution transcriptome map of human, chimpanzee, bonobo, and macaque brains
.
Genome Res
.
2020
;
30
(
5
):
776
89
.
17.
Micali
N
,
Ma
S
,
Li
M
,
Kim
SK
,
Mato-Blanco
X
,
Sindhu
SK
, et al
.
Molecular programs of regional specification and neural stem cell fate progression in macaque telencephalon
.
Science
.
2023
;
382
(
6667
):
eadf3786
.
18.
Jorstad
NL
,
Song
JHT
,
Exposito-Alonso
D
,
Suresh
H
,
Castro-Pacheco
N
,
Krienen
FM
, et al
.
Comparative transcriptomics reveals human-specific cortical features
.
Science
.
2023
;
382
(
6667
):
eade9516
.
19.
Ma
S
,
Skarica
M
,
Li
Q
,
Xu
C
,
Risgaard
RD
,
Tebbenkamp
ATN
, et al
.
Molecular and cellular evolution of the primate dorsolateral prefrontal cortex
.
Science
.
2022
;
377
(
6614
):
eabo7257
.
20.
Zhao
J
,
Davis
MD
,
Martens
YA
,
Shinohara
M
,
Graff-Radford
NR
,
Younkin
SG
, et al
.
APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes
.
Hum Mol Genet
.
2017
;
26
(
14
):
2690
700
.
21.
di Domenico
A
,
Carola
G
,
Calatayud
C
,
Pons-Espinal
M
,
Munoz
JP
,
Richaud-Patin
Y
, et al
.
Patient-specific iPSC-derived astrocytes contribute to non-cell-autonomous neurodegeneration in Parkinson’s disease
.
Stem Cel Rep
.
2019
;
12
(
2
):
213
29
.
22.
Penney
J
,
Ralvenius
WT
,
Tsai
LH
.
Modeling Alzheimer’s disease with iPSC-derived brain cells
.
Mol Psychiatry
.
2020
;
25
(
1
):
148
67
.
23.
Reiter
S
,
Sun
T
,
Gartner
S
,
Pohlmann
S
,
Winkler
M
.
Development of rhesus macaque astrocyte cell lines supporting infection with a panel of viruses
.
PLoS One
.
2024
;
19
(
5
):
e0303059
.
24.
Zintel
TM
,
Pizzollo
J
,
Claypool
CG
,
Babbitt
CC
.
Astrocytes drive divergent metabolic gene expression in humans and chimpanzees
.
Genome Biol Evol
.
2024
;
16
(
1
):
evad239
.
25.
Pembroke
WG
,
Hartl
CL
,
Geschwind
DH
.
Evolutionary conservation and divergence of the human brain transcriptome
.
Genome Biol
.
2021
;
22
(
1
):
52
.
26.
Zhang
Y
,
Sloan
SA
,
Clarke
LE
,
Caneda
C
,
Plaza
CA
,
Blumenthal
PD
, et al
.
Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse
.
Neuron
.
2016
;
89
(
1
):
37
53
.
27.
Sloan
SA
,
Darmanis
S
,
Huber
N
,
Khan
TA
,
Birey
F
,
Caneda
C
, et al
.
Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells
.
Neuron
.
2017
;
95
(
4
):
779
90.e6
.
28.
Kanton
S
,
Boyle
MJ
,
He
Z
,
Santel
M
,
Weigert
A
,
Sanchis-Calleja
F
, et al
.
Organoid single-cell genomic atlas uncovers human-specific features of brain development
.
Nature
.
2019
;
574
(
7778
):
418
22
.
29.
Velasco
S
,
Kedaigle
AJ
,
Simmons
SK
,
Nash
A
,
Rocha
M
,
Quadrato
G
, et al
.
Individual brain organoids reproducibly form cell diversity of the human cerebral cortex
.
Nature
.
2019
;
570
(
7762
):
523
7
.
30.
Agoglia
RM
,
Sun
D
,
Birey
F
,
Yoon
SJ
,
Miura
Y
,
Sabatini
K
, et al
.
Primate cell fusion disentangles gene regulatory divergence in neurodevelopment
.
Nature
.
2021
;
592
(
7854
):
421
7
.
31.
Verdier
JM
,
Acquatella
I
,
Lautier
C
,
Devau
G
,
Trouche
S
,
Lasbleiz
C
, et al
.
Lessons from the analysis of nonhuman primates for understanding human aging and neurodegenerative diseases
.
Front Neurosci
.
2015
;
9
:
64
.
32.
Emborg
ME
.
Nonhuman primate models of neurodegenerative disorders
.
ILAR J
.
2017
;
58
(
2
):
190
201
.
33.
Benton
ML
,
Abraham
A
,
LaBella
AL
,
Abbot
P
,
Rokas
A
,
Capra
JA
.
The influence of evolutionary history on human health and disease
.
Nat Rev Genet
.
2021
;
22
(
5
):
269
83
.
34.
O'Bleness
M
,
Searles
VB
,
Varki
A
,
Gagneux
P
,
Sikela
JM
.
Evolution of genetic and genomic features unique to the human lineage
.
Nat Rev
.
2012
;
13
(
12
):
853
66
.
35.
Rubinsztein
DC
.
Functional genomics approaches to neurodegenerative diseases
.
Mamm Genome
.
2008
;
19
(
9
):
587
90
.
36.
Phatnani
H
,
Maniatis
T
.
Astrocytes in neurodegenerative disease
.
Cold Spring Harb Perspect Biol
.
2015
;
7
(
6
):
a020628
.
37.
Endo
F
,
Kasai
A
,
Soto
JS
,
Yu
X
,
Qu
Z
,
Hashimoto
H
, et al
.
Molecular basis of astrocyte diversity and morphology across the CNS in health and disease
.
Science
.
2022
;
378
(
6619
):
eadc9020
.
38.
Qian
Z
,
Qin
J
,
Lai
Y
,
Zhang
C
,
Zhang
X
.
Large-scale integration of single-cell RNA-seq data reveals astrocyte diversity and transcriptomic modules across six central nervous system disorders
.
Biomolecules
.
2023
;
13
(
4
):
692
.
39.
Okada
S
,
Hara
M
,
Kobayakawa
K
,
Matsumoto
Y
,
Nakashima
Y
.
Astrocyte reactivity and astrogliosis after spinal cord injury
.
Neurosci Res
.
2018
;
126
:
39
43
.
40.
Johnson
KM
,
Milner
R
,
Crocker
SJ
.
Extracellular matrix composition determines astrocyte responses to mechanical and inflammatory stimuli
.
Neurosci Lett
.
2015
;
600
:
104
9
.
41.
Pogoda
K
,
Chin
L
,
Georges
PC
,
Byfield
FJ
,
Bucki
R
,
Kim
R
, et al
.
Compression stiffening of brain and its effect on mechanosensing by glioma cells
.
New J Phys
.
2014
;
16
:
075002
.
42.
Liddelow
SA
,
Barres
BA
.
Reactive astrocytes: production, function, and therapeutic potential
.
Immunity
.
2017
;
46
(
6
):
957
67
.
43.
Liddelow
SA
,
Guttenplan
KA
,
Clarke
LE
,
Bennett
FC
,
Bohlen
CJ
,
Schirmer
L
, et al
.
Neurotoxic reactive astrocytes are induced by activated microglia
.
Nature
.
2017
;
541
(
7638
):
481
7
.
44.
Calvo
JL
,
Carbonell
AL
,
Boya
J
.
Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats
.
Brain Res
.
1991
;
566
(
1–2
):
333
6
.
45.
Wanner
IB
,
Anderson
MA
,
Song
B
,
Levine
J
,
Fernandez
A
,
Gray-Thompson
Z
, et al
.
Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury
.
J Neurosci
.
2013
;
33
(
31
):
12870
86
.
46.
Huber
RE
,
Babbitt
C
,
Peyton
SR
.
Heterogeneity of brain extracellular matrix and astrocyte activation
.
J Neurosci Res
.
2024
;
102
(
5
):
e25356
.
47.
Munger
EL
,
Edler
MK
,
Hopkins
WD
,
Ely
JJ
,
Erwin
JM
,
Perl
DP
, et al
.
Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees
.
J Comp Neurol
.
2019
;
527
(
7
):
1179
95
.
48.
Sherwood
CC
,
Gordon
AD
,
Allen
JS
,
Phillips
KA
,
Erwin
JM
,
Hof
PR
, et al
.
Aging of the cerebral cortex differs between humans and chimpanzees
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
32
):
13029
34
.
49.
Galarza
S
,
Crosby
AJ
,
Pak
C
,
Peyton
SR
.
Control of astrocyte quiescence and activation in a synthetic brain hydrogel
.
Adv Healthc Mater
.
2020
;
9
(
4
):
e1901419
.
50.
Goldman
SA
,
Nedergaard
M
,
Windrem
MS
.
Modeling cognition and disease using human glial chimeric mice
.
Glia
.
2015
;
63
(
8
):
1483
93
.
51.
Mariani
JN
,
Zou
L
,
Goldman
SA
.
Human glial chimeric mice to define the role of glial pathology in human disease
.
Methods Mol Biol
.
2019
;
1936
:
311
31
.
52.
Vieira
R
,
Mariani
JN
,
Huynh
NPT
,
Stephensen
HJT
,
Solly
R
,
Tate
A
, et al
.
Young glial progenitor cells competitively replace aged and diseased human glia in the adult chimeric mouse brain
.
Nat Biotechnol
.
2024
;
42
(
5
):
719
30
.
53.
Padmashri
R
,
Ren
B
,
Oldham
B
,
Jung
Y
,
Gough
R
,
Dunaevsky
A
.
Modeling human-specific interlaminar astrocytes in the mouse cerebral cortex
.
J Comp Neurol
.
2021
;
529
(
4
):
802
10
.
54.
Berto
S
,
Mendizabal
I
,
Usui
N
,
Toriumi
K
,
Chatterjee
P
,
Douglas
C
, et al
.
Accelerated evolution of oligodendrocytes in the human brain
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
48
):
24334
42
.
55.
Suresh
H
,
Crow
M
,
Jorstad
N
,
Hodge
R
,
Lein
E
,
Dobin
A
, et al
.
Comparative single-cell transcriptomic analysis of primate brains highlights human-specific regulatory evolution
.
Nat Ecol Evol
.
2023
;
7
(
11
):
1930
43
.
You do not currently have access to this content.