Introduction: Prairie voles (Microtus ochrogaster) are one of the few mammalian species that are monogamous and engage in the biparental rearing of their offspring. Biparental care impacts the quantity and quality of care the offspring receives. The increased attention by the father may translate to heightened tactile contact the offspring receives through licking and grooming. Methods: In the current study, we used electrophysiological multiunit techniques to define the organization of the perioral representation in the primary somatosensory area (S1) of prairie voles. Functional representations were related to myeloarchitectonic boundaries. Results: Our results show that most of S1 is occupied by the representation of the contralateral mystacial whiskers and the lower and upper lips. The mystacial vibrissae representation encompassed a large portion of the caudolateral S1, while the representation of the lower and upper lips occupied a large portion of the rostrolateral aspect of S1. We found that neuronal populations representing the perioral structures tended to have small receptive fields relative to other body part representations on the head and that the representation of the mystacial whiskers and perioral structures was coextensive with cytoarchitectonically defined barrel fields that extend from the caudolateral to a rostrolateral aspect of S1. Conclusions: The relative magnification of the perioral representation in S1 reflects the importance of these regions for sensory-mediated behaviors such as tactile interactions in biparental care and social bonding. This highlights how environmental and behavioral factors shape S1 organization through brain-body synergy, suggesting that relatively small changes in experience can drive adaptive cortical plasticity that, over subsequent generations, drives the cortical phenotypic diversity across the rodent clade and mammals in general.

1.
Armstrong
DM
,
Armstrong
DM
,
Choate
JR
,
Jones
JK
,
University
TT
.
Distributional patterns of mammals in the plains states
.
Lubbock, TX
.
Texas Tech University Press
;
1986
.
2.
Stalling
DT
.
Microtus ochrogaster
.
Mamm Species
.
1990
;
355
:
1
9
.
3.
Oehlenschlager
RJ
.
Notes on the prairie vole Microtus ochrogaster in Wadena county
.
Minnesota
.
4.
Kleiman
DG
.
Monogamy in mammals
.
Q Rev Biol
.
1977
;
52
(
1
):
39
69
.
5.
Simoncelli
LA
,
Delevan
CJ
,
Al-Naimi
OAS
,
Bamshad
M
.
Female tactile cues maximize paternal behavior in prairie voles
.
Behav Ecol Sociobiol
.
2010
;
64
(
5
):
865
73
.
6.
Perkeybile
AM
,
Griffin
LL
,
Bales
KL
.
Natural variation in early parental care correlates with social behaviors in adolescent prairie voles (Microtus ochrogaster)
.
Front Behav Neurosci
.
2013
;
7
:
21
.
7.
Bales
KL
,
Saltzman
W
.
Fathering in rodents: neurobiological substrates and consequences for offspring
.
Horm Behav
.
2016
;
77
:
249
59
.
8.
Seelke
AMH
,
Perkeybile
AM
,
Grunewald
R
,
Bales
KL
,
Krubitzer
LA
.
Individual differences in cortical connections of somatosensory cortex are associated with parental rearing style in prairie voles (Microtus ochrogaster)
.
J Comp Neurol
.
2016
;
524
(
3
):
564
77
.
9.
Seelke
AMH
,
Yuan
S-M
,
Perkeybile
AM
,
Krubitzer
LA
,
Bales
KL
.
Early experiences can alter the size of cortical fields in prairie voles (Microtus ochrogaster)
.
Environ Epigenet
.
2016
;
2
(
3
):
dvw019
.
10.
Young
LJ
,
Murphy Young
AZ
,
Hammock
EAD
.
Anatomy and neurochemistry of the pair bond
.
J Comp Neurol
.
2005
;
493
(
1
):
51
7
.
11.
Bales
KL
,
Carter
CS
.
Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster)
.
Behav Neurosci
.
2003
;
117
(
4
):
854
9
.
12.
Campi
KL
,
Karlen
SJ
,
Bales
KL
,
Krubitzer
L
.
Organization of sensory neocortex in prairie voles (Microtus ochrogaster)
.
J Comp Neurol
.
2007
;
502
(
3
):
414
26
.
13.
Sarko
DK
,
Leitch
DB
,
Girard
I
,
Sikes
RS
,
Catania
KC
.
Organization of somatosensory cortex in the northern grasshopper mouse (Onychomys leucogaster), a predatory rodent
.
J Comp Neurol
.
2011
;
519
(
1
):
64
74
.
14.
Slutsky
DA
,
Manger
PR
,
Krubitzer
L
.
Multiple somatosensory areas in the anterior parietal cortex of the California ground squirrel (Spermophilus beecheyii)
.
J Comp Neurol
.
2000
;
416
(
4
):
521
39
.
15.
Henry
EC
,
Remple
MS
,
O’Riain
MJ
,
Catania
KC
.
Organization of somatosensory cortical areas in the naked mole-rat (Heterocephalus glaber)
.
J Comp Neurol
.
2006
;
495
(
4
):
434
52
.
16.
Wong-Riley
M
.
Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry
.
Brain Res
.
1979
;
171
(
1
):
11
28
.
17.
Gallyas
F
.
Silver staining of myelin by means of physical development
.
Neurol Res
.
1979
;
1
(
2
):
203
9
.
18.
Halley
AC
,
Baldwin
MKL
,
Cooke
DF
,
Englund
M
,
Krubitzer
L
.
Distributed motor control of limb movements in rat motor and somatosensory cortex: the sensorimotor amalgam revisited
.
Cereb Cortex
.
2020
;
30
(
12
):
6296
312
.
19.
Halley
AC
,
Baldwin
MKL
,
Cooke
DF
,
Englund
M
,
Pineda
CR
,
Schmid
T
, et al
.
Coevolution of motor cortex and behavioral specializations associated with flight and echolocation in bats
.
Curr Biol
.
2022
;
32
(
13
):
2935
41.e3
.
20.
Kilgard
MP
,
Merzenich
MM
.
Cortical map reorganization enabled by nucleus basalis activity
.
Science
.
1998
;
279
(
5357
):
1714
8
.
21.
Bao
S
,
Chan
VT
,
Merzenich
MM
.
Cortical remodelling induced by activity of ventral tegmental dopamine neurons
.
Nature
.
2001
;
412
(
6842
):
79
83
.
22.
Bizley
JK
,
King
AJ
.
Visual–auditory spatial processing in auditory cortical neurons
.
Brain Res
.
2008
;
1242
:
24
36
.
23.
de Villers-Sidani
E
,
Chang
EF
,
Bao
S
,
Merzenich
MM
.
Critical Period window for spectral tuning defined in the primary auditory cortex (A1) in the rat
.
J Neurosci
.
2007
;
27
(
1
):
180
9
.
24.
Schneider
CA
,
Rasband
WS
,
Eliceiri
KW
.
NIH Image to ImageJ: 25 years of image analysis
.
Nat Methods
.
2012
;
9
(
7
):
671
5
.
25.
Krubitzer
L
,
Campi
KL
,
Cooke
DF
.
All rodents are not the same: a modern synthesis of cortical organization
.
Brain Behav Evol
.
2011
;
78
(
1
):
51
93
.
26.
Remple
MS
,
Henry
EC
,
Catania
KC
.
Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth
.
J Comp Neurol
.
2003
;
467
(
1
):
105
18
.
27.
Catania
KC
,
Remple
MS
.
Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain
.
Proc Natl Acad Sci USA
.
2002
;
99
(
8
):
5692
7
.
28.
Simons
DJ
.
Response properties of vibrissa units in rat SI somatosensory neocortex
.
J Neurophysiol
.
1978
;
41
(
3
):
798
820
.
29.
Welker
C
.
Receptive fields of barrels in the somatosensory neocortex of the rat
.
J Comp Neurol
.
1976
;
166
(
2
):
173
89
.
30.
Welker
E
,
Van der Loos
H
.
Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae
.
J Neurosci
.
1986
;
6
(
11
):
3355
73
.
31.
Welker
C
.
Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat
.
Brain Res
.
1971
;
26
(
2
):
259
75
.
32.
Campos
GB
,
Welker
WI
.
Comparisons between brains of a large and a small hystricomorph rodent: capybara, Hydrochoerus and Guinea pig, Cavia;neocortical projection regions and measurements of brain subdivisions
.
Brain Behav Evol
.
1976
;
13
(
4
):
243
66
.
33.
Sur
M
,
Nelson
RJ
,
Kaas
JH
.
The representation of the body surface in somatosensory area I of the grey squirrel
.
J Comp Neurol
.
1978
;
179
(
2
):
425
49
.
34.
Woolsey
CN
.
Patterns of sensory representation in the cerebral cortex
.
Fed Proc
.
1947
;
6
(
2
):
437
41
.
35.
Woolsey
TA
,
Welker
C
,
Schwartz
RH
.
Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of “barrels” in layer IV
.
J Comp Neurol
.
1975
;
164
(
1
):
79
94
.
36.
Pellicer-Morata
V
,
Wang
L
,
de Jongh Curry
A
,
Tsao
JW
,
Waters
RS
.
Structural and functional organization of the lower jaw barrel subfield in rat primary somatosensory cortex
.
J Comp Neurol
.
2021
;
529
(
8
):
1895
910
.
37.
Brett-Green
BA
,
Chen-Bee
CH
,
Frostig
RD
.
Comparing the functional representations of central and border whiskers in rat primary somatosensory cortex
.
J Neurosci
.
2001
;
21
(
24
):
9944
54
.
38.
Barreto
GR
,
Herrera
EA
.
Foraging patterns of capybaras in a seasonally flooded savanna of Venezuela
.
J Trop Ecol
.
1998
;
14
(
1
):
87
98
.
39.
Smith
CC
,
Follmer
D
.
Food preferences of squirrels
.
Ecology
.
1972
;
53
(
1
):
82
91
.
40.
Krubitzer
LA
,
Sesma
MA
,
Kaas
JH
.
Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels
.
J Comp Neurol
.
1986
;
250
(
4
):
403
30
.
41.
Pimentel-Souza
F
,
Cosenza
RM
,
Campos
GB
,
Johnson
JI
.
Somatic sensory cortical regions of the agouti, Dasyprocta aguti
.
Brain Behav Evol
.
1980
;
17
(
3
):
218
40
.
42.
Diamond
ME
,
Huang
W
,
Ebner
FF
.
Laminar comparison of somatosensory cortical plasticity
.
Science
.
1994
;
265
(
5180
):
1885
8
.
43.
Siucinska
E
,
Kossut
M
.
Short-lasting classical conditioning induces reversible changes of representational maps of vibrissae in mouse SI cortex--a 2DG study
.
Cereb Cortex
.
1996
;
6
(
3
):
506
13
.
44.
Wallace
H
,
Fox
K
.
Local cortical interactions determine the form of cortical plasticity
.
J Neurobiol
.
1999
;
41
(
1
):
58
63
.
45.
Seelke
AMH
,
Dooley
JC
,
Krubitzer
LA
.
The emergence of somatotopic maps of the body in S1 in rats: the correspondence between functional and anatomical organization
.
PLoS One
.
2012
;
7
(
2
):
e32322
.
46.
Catania
KC
,
Kaas
JH
.
Somatosensory fovea in the star-nosed mole: behavioral use of the star in relation to innervation patterns and cortical representation
.
J Comp Neurol
.
1997
;
387
(
2
):
215
33
.
47.
Lee
KJ
,
Woolsey
TA
.
A proportional relationship between peripheral innervation density and cortical neuron number in the somatosensory system of the mouse
.
Brain Res
.
1975
;
99
(
2
):
349
53
.
48.
Celikel
T
,
Sakmann
B
.
Sensory integration across space and in time for decision making in the somatosensory system of rodents
.
Proc Natl Acad Sci USA
.
2007
;
104
(
4
):
1395
400
.
49.
Brecht
M
,
Preilowski
B
,
Merzenich
MM
.
Functional architecture of the mystacial vibrissae
.
Behav Brain Res
.
1997
;
84
(
1–2
):
81
97
.
50.
Hartmann
MJ
.
Active sensing capabilities of the rat whisker system
.
Autonomous Robots
.
2001
;
11
(
3
):
249
54
.
51.
Bobrov
E
,
Wolfe
J
,
Rao
RP
,
Brecht
M
.
The representation of social facial touch in rat barrel cortex
.
Curr Biol
.
2014
;
24
(
1
):
109
15
.
52.
McGuire
B
,
Novak
M
.
The effects of cross-fostering on the development of social preferences in meadow voles (Microtus pennsylvanicus)
.
Behav Neural Biol
.
1987
;
47
(
2
):
167
72
.
53.
Eisenberg
JF
,
Leyhausen
P
.
The phylogenesis of predatory behavior in mammals
.
Z Tierpsychol
.
1972
;
30
(
1
):
59
93
.
54.
Lacey
EA
,
Alexander
RD
,
Braude
SH
,
Sherman
PW
,
Jarvis
JUM
.
8. An ethogram for the naked mole-rat: nonvocal behaviors
. In:
Sherman
PW
,
Jarvis
JUM
,
Alexander
RD
, editors.
The biology of the naked mole-rat
.
Princeton University Press
;
2017
. p.
209
42
.
55.
Ojasti
J
.
Estudio biológico del chigüire o capibara
.
Fondo Nacional de Investigaciones Agropecuarias
;
1973
.
56.
González-Jiménez
E
.
Digestive physiology and feeding of the capybara
.
USA
:
CRC Press Inc
;
1977
.
Vol. 1
. p.
167
77
.
57.
Alho
C
,
Rondon
N
.
Habitats, population densities, and social structure of capybaras (Hydrochaeris Hydrochaeris, Rodentia) in the Pantanal, Brazil
.
Rev Bras Zool
.
1987
;
4
(
2
):
139
49
.
58.
Steppan
SJ
,
Schenk
JJ
.
Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates
.
PLoS One
.
2017
;
12
(
8
):
e0183070
.
59.
Huchon
D
,
Chevret
P
,
Jordan
U
,
Kilpatrick
CW
,
Ranwez
V
,
Jenkins
PD
, et al
.
Multiple molecular evidences for a living mammalian fossil
.
Proc Natl Acad Sci USA
.
2007
;
104
(
18
):
7495
9
.
You do not currently have access to this content.