Introduction: Movement requires maneuvers that generate thrust to either make turns or move the body forward in physical space. The computational space for perpetually controlling the relative position of every point on the body surface can be vast. We hypothesize the evolution of efficient design for movement that minimizes active (neural) control by leveraging the passive (reactive) forces between the body and the surrounding medium at play. To test our hypothesis, we investigate the presence of stereotypical postures during free-swimming in adult zebrafish, Danio rerio. Methods: We perform markerless tracking using DeepLabCut (DLC), a deep learning pose-estimation toolkit, to track geometric relationships between body parts. We identify putative clusters of postural configurations from twelve freely behaving zebrafish, using unsupervised multivariate time-series analysis (B-SOiD machine-learning software) and of distances and angles between body segments extracted from DLC data. Results: When applied to single individuals, DLC-extracted data reveal a best-fit for 36–50 clusters in contrast to 86 clusters for data pooled from all 12 animals. The centroids of each cluster obtained over 14,000 sequential frames represent an a priori classification into relatively stable “target body postures.” We use multidimensional scaling of mean parameter values for each cluster to map cluster centroids within two dimensions of postural space. From a posteriori visual analysis, we condense neighboring postural variants into 15 superclusters or core body configurations. We develop a nomenclature specifying the anteroposterior level/s (upper, mid, and lower) and degree of bending. Conclusion: Our results suggest that constraining bends to mainly three anteroposterior levels in fish paved the way for the evolution of a neck, fore- and hind limb design for maneuverability in land vertebrates.

1.
Saint-Amant
L
,
Drapeau
P
.
Time course of the development of motor behaviors in the zebrafish embryo
.
J Neurobiol
.
1998
;
37
(
4
):
622
32
.
2.
Korn
H
,
Faber
DS
.
The Mauthner cell half a century later: a neurobiological model for decision-making
.
Neuron
.
2005
;
47
(
1
):
13
28
.
3.
Prablanc
C
,
Desmurget
M
,
Gréa
H
.
Neural control of on-line guidance of hand reaching movements
.
Prog Brain Res
.
2003
;
142
:
155
70
.
4.
Scott
SH
.
The computational and neural basis of voluntary motor control and planning
.
Trends Cogn Sci
.
2012
;
16
(
11
):
541
9
.
5.
Mathis
A
,
Mamidanna
P
,
Cury
KM
,
Abe
T
,
Murthy
VN
,
Mathis
MW
, et al
.
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
.
Nat Neurosci
.
2018
;
21
(
9
):
1281
9
.
6.
Severi
KE
,
Portugues
R
,
Marques
JC
,
O’Malley
DM
,
Orger
MB
,
Engert
F
.
Neural control and modulation of swimming speed in the larval zebrafish
.
Neuron
.
2014
;
83
(
3
):
692
707
.
7.
Plaut
I
.
Effects of fin size on swimming performance, swimming behaviour and routine activity of zebrafish Danio rerio
.
J Exp Biol
.
2000
;
203
(
Pt 4
):
813
20
.
8.
Rival
DE
,
Yang
W
,
Caron
JB
.
Fish without tail fins-exploring the function of tail morphology of the first vertebrates
.
Integr Comp Biol
.
2021
;
61
(
1
):
37
49
.
9.
Howe
K
,
Clark
MD
,
Torroja
CF
,
Torrance
J
,
Berthelot
C
,
Muffato
M
, et al
.
The zebrafish reference genome sequence and its relationship to the human genome
.
Nature
.
2013
;
496
(
7446
):
498
503
.
10.
Xi
Y
,
Noble
S
,
Ekker
M
.
Modeling neurodegeneration in zebrafish
.
Curr Neurol Neurosci Rep
.
2011
;
11
(
3
):
274
82
.
11.
Cho
SJ
,
Byun
D
,
Nam
TS
,
Choi
SY
,
Lee
BG
,
Kim
MK
, et al
.
Zebrafish as an animal model in epilepsy studies with multichannel EEG recordings
.
Sci Rep
.
2017
;
7
(
1
):
3099
.
12.
McGown
A
,
Ramesh
T
,
Sharrack
B
.
The development of a novel zebrafish model of demyelination allowing therapeutic development to promote remyelination in multiple sclerosis (I10.003)
.
Neurology
.
2016
;
86
(
16_Suppl ment
):
I10
.
13.
Dempsey
WP
,
Du
Z
,
Nadtochiy
A
,
Smith
CD
,
Czajkowski
K
,
Andreev
A
, et al
.
Regional synapse gain and loss accompany memory formation in larval zebrafish
.
Proc Natl Acad Sci USA
.
2022
;
119
(
3
):
e2107661119
.
14.
Hughes
GL
,
Lones
MA
,
Bedder
M
,
Currie
PD
,
Smith
SL
,
Pownall
ME
.
Machine learning discriminates a movement disorder in a zebrafish model of Parkinson’s disease
.
Dis Model Mech
.
2020
;
13
(
10
):
dmm045815
.
15.
Gibert
Y
,
Trengove
MC
,
Ward
AC
.
Zebrafish as a genetic model in pre-clinical drug testing and screening
.
Curr Med Chem
.
2013
;
20
(
19
):
2458
66
.
16.
Buckley
CE
,
Goldsmith
P
,
Franklin
RJM
.
Zebrafish myelination: a transparent model for remyelination
.
Dis Model Mech
.
2008
;
1
(
4–5
):
221
8
.
17.
Muto
A
,
Kawakami
K
.
Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system
.
Commun Integr Biol
.
2011
;
4
(
5
):
566
8
.
18.
Turrini
L
,
Ricci
P
,
Sorelli
M
,
de Vito
G
,
Marchetti
M
,
Vanzi
F
, et al
.
Two-photon all-optical electrophysiology for the dissection of larval zebrafish brain functional connectivity
.
BioRxiv
.
2024
.
19.
Bandonil
JS
,
Liao
YH
,
Fathi
A
,
Huang
KH
.
Two-photon calcium imaging of forebrain activity in behaving adult zebrafish
.
J Vis Exp
.
2023
;
197
.
20.
Sumbre
G
,
de Polavieja
GG
.
The world according to zebrafish: how neural circuits generate behavior
.
Front Neural Circuits
.
2014
;
8
:
91
.
21.
Roussel
Y
,
Gaudreau
SF
,
Kacer
ER
,
Sengupta
M
,
Bui
TV
.
Modeling spinal locomotor circuits for movements in developing zebrafish
.
Elife
.
2021
;
10
:
e67453
.
22.
Marques
JC
,
Lackner
S
,
Félix
R
,
Orger
MB
.
Structure of the zebrafish locomotor repertoire revealed with unsupervised behavioral clustering
.
Curr Biol
.
2018
;
28
(
2
):
181
95.e5
.
23.
Stednitz
SJ
,
Washbourne
P
.
Rapid progressive social development of zebrafish
.
Zebrafish
.
2020
;
17
(
1
):
11
7
.
24.
Lee
RKK
,
Eaton
RE
.
Identifuible retidospinal neurons of the adult zebrafish, Brachydanio rerio
.
J Comaparative Neurol
.
1991
;
304
:
35
52
.
25.
Jellema
T
,
Perrett
DI
.
Neural basis for the perception of goal-directed actions
. In:
The cognitive neuroscience of social behaviour
.
Abingdon, UK
:
Taylor & Francis
;
2005
. p.
81
112
.
26.
Perrett
DI
.
A cellular basis for reading minds from faces and actions
. In:
Hauser
MD
,
Konishi
M
, editors.
The design of animal communication
.
The MIT Press
;
1999
. p.
159
86
.
27.
Girdhar
K
,
Gruebele
M
,
Chemla
YR
.
The behavioral space of zebrafish locomotion and its neural network analog
.
PLoS One
.
2015
;
10
(
7
):
e0128668
.
28.
Lauder
GV
,
Lim
J
,
Shelton
R
,
Witt
C
,
Anderson
E
,
Tangorra
JL
.
Robotic models for studying undulatory locomotion in fishes
.
Mar Technol Soc J
.
2011
;
45
(
4
):
41
55
.
29.
LiLee
YJM
,
Chon
TS
,
Liu
Y
,
Kim
H
,
Bae
MJ
,
Bae
MJ
.
Analysis of movement behavior of zebrafish (Danio rerio) under chemical stress using hidden Markov model
.
Mod Phys Lett B
.
2013
;
27
(
02
):
1350014
.
30.
Ronacher
B
.
Innate releasing mechanisms and fixed action patterns: basic ethological concepts as drivers for neuroethological studies on acoustic communication in Orthoptera
.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol
.
2019
;
205
(
1
):
33
50
.
31.
Stephens
GJ
,
Johnson-Kerner
B
,
Bialek
W
,
Ryu
WS
.
Dimensionality and dynamics in the behavior of C. elegans
.
Plos Comput Biol
.
2008
;
4
(
4
):
e1000028
.
32.
Vinepinsky
E
,
Cohen
L
,
Perchik
S
,
Ben-Shahar
O
,
Donchin
O
,
Segev
R
.
Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish
.
Sci Rep
.
2020
;
10
(
1
):
14762
.
33.
Drai
D
,
Golani
I
.
SEE: a tool for the visualization and analysis of rodent exploratory behavior
.
Neurosci Biobehav Rev
.
2001
;
25
(
5
):
409
26
.
34.
Leshner
A
,
Pfaff
DW
.
Quantification of behavior
.
Proc Natl Acad Sci USA
.
2011
;
108
(
Suppl 3
):
15537
41
.
35.
Fentress
JC
.
Streams and patterns in behavior as challenges for future technologies
.
Behav Res Methods
.
2009
;
41
(
3
):
765
71
.
36.
Mirat
O
,
Sternberg
JR
,
Severi
KE
,
Wyart
C
.
ZebraZoom: an automated program for high-throughput behavioral analysis and categorization
.
Front Neural Circuits
.
2013
;
7
:
107
.
37.
Franco-Restrepo
JE
,
Forero
DA
,
Vargas
RA
.
A review of freely available, open-source software for the automated analysis of the behavior of adult zebrafish
.
Zebrafish
.
2019
;
16
(
3
):
223
32
.
38.
Romero-Ferrero
F
,
Bergomi
MG
,
Hinz
RC
,
Heras
FJH
,
de Polavieja
GG
.
idtracker.ai: tracking all individuals in small or large collectives of unmarked animals
.
Nat Methods
.
2019
;
16
(
2
):
179
82
.
39.
Percie du Sert
N
,
Hurst
V
,
Ahluwalia
A
,
Alam
S
,
Avey
MT
,
Baker
M
, et al
.
The ARRIVE guidelines 2.0: updated guidelines for reporting animal research
.
BMC Vet Res
.
2020
;
16
(
1
):
242
.
40.
Kane
GA
,
Lopes
G
,
Saunders
JL
,
Mathis
A
,
Mathis
MW
.
Real-time, low-latency closed-loop feedback using markerless posture tracking
.
Elife
.
2020
;
9
:
e61909
.
41.
Hsu
AI
,
Yttri
EA
.
B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors
.
Nat Commun
.
2021
;
12
(
1
):
5188
.
42.
Burgess
HA
,
Granato
M
.
The neurogenetic frontier--lessons from misbehaving zebrafish
.
Brief Funct Genomic Proteomic
.
2008
;
7
(
6
):
474
82
.
43.
Liu
Y
,
Lee
SH
,
Chon
TS
.
Analysis of behavioral changes of zebrafish (Danio rerio) in response to formaldehyde using Self-organizing map and a hidden Markov model
.
Ecol Model
.
2011
;
222
(
14
):
2191
201
.
44.
Torigoe
M
,
Islam
T
,
Kakinuma
H
,
Fung
CCA
,
Isomura
T
,
Shimazaki
H
, et al
.
Zebrafish capable of generating future state prediction error show improved active avoidance behavior in virtual reality
.
Nat Commun
.
2021
;
12
(
1
):
5712
.
45.
Tytell
ED
,
Hsu
CY
,
Fauci
LJ
.
The role of mechanical resonance in the neural control of swimming in fishes
.
Zool
.
2014
;
117
(
1
):
48
56
.
46.
Long
J
,
Nipper
K
.
The importance of body stiffness in undulatory propulsion
.
Am Zool
.
1996
;
36
(
6
):
678
94
.
47.
Berg
EM
,
Björnfors
ER
,
Pallucchi
I
,
Picton
LD
,
El Manira
A
.
Principles governing locomotion in vertebrates: lessons from zebrafish
.
Front Neural Circuits
.
2018
;
12
:
73
.
48.
Johnson
RE
,
Linderman
S
,
Panier
T
,
Wee
CL
,
Song
E
,
Herrera
KJ
, et al
.
Probabilistic models of larval zebrafish behavior reveal structure on many scales
.
Curr Biol
.
2020
;
30
(
1
):
70
82.e4
.
49.
Ghosh
M
,
Rihel
J
.
Hierarchical compression reveals sub-second to day-long structure in larval zebrafish behavior
.
eNeuro
.
2020
;
7
(
4
):
ENEURO.0408-19.2020
.
50.
Ozkan-Aydin
Y
,
Liu
B
,
Ferrero
AC
,
Seidel
M
,
Hammond
FL
,
Goldman
DI
.
Lateral undulation aids biological and robotic earthworm anchoring and locomotion
.
BioRxiv
.
2021
.
51.
Bicanski
A
,
Ryczko
D
,
Knuesel
J
,
Harischandra
N
,
Charrier
V
,
Ekeberg
Ö
, et al
.
Decoding the mechanisms of gait generation in salamanders by combining neurobiology, modeling and robotics
.
Biol Cybern
.
2013
;
107
(
5
):
545
64
.
52.
Cabelguen
JM
,
Bourcier-Lucas
C
,
Dubuc
R
.
Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander Notophthalmus viridescens
.
J Neurosci
.
2003
;
23
(
6
):
2434
9
.
53.
Romer
AS
.
The vertebrate body
.
Philadephia, USA
:
W. B. Saunders
;
1977
.
54.
Mizutani
K
,
Shimoi
T
,
Ogawa
H
,
Kitamura
Y
,
Oka
K
.
Modulation of motor patterns by sensory feedback during earthworm locomotion
.
Neurosci Res
.
2004
;
48
(
4
):
457
62
.
55.
Tanaka
Y
,
Ito
K
,
Nakagaki
T
,
Kobayashi
R
.
Mechanics of peristaltic locomotion and role of anchoring
.
J R Soc Interf
.
2012
;
9
(
67
):
222
33
.
56.
Gordon
MS
,
Lauritzen
DV
,
Wiktorowicz
AM
.
Passive mechanisms controlling posture and trajectory in swimming fishes
. In:
Kato
N
,
Kamimura
S
, editors.
Bio-mechanisms of swimming and flying; fluid dynamics, biomimetic robots, and sports science. Kato bunmeisha
.
Japan
:
Springer
;
2008
. p.
53
66
.
57.
Hamlet
CL
,
Hoffman
KA
,
Tytell
ED
,
Fauci
LJ
.
The role of curvature feedback in the energetics and dynamics of lamprey swimming: a closed-loop model
.
PLoS Comput Biol
.
2018
;
14
(
8
):
e1006324
.
58.
Georgopoulos
AP
,
Kettner
RE
,
Schwartz
AB
.
Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population
.
J Neurosci
.
1988
;
8
(
8
):
2928
37
.
59.
Lee
IH
,
Assad
JA
.
Putaminal activity for simple reactions or self-timed movements
.
J Neurophysiol
.
2003
;
89
(
5
):
2528
37
.
60.
Lee
RK
,
Eaton
RC
.
Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio
.
J Comp Neurol
.
1991
;
304
(
1
):
34
52
.
61.
Hermer-Vazquez
L
,
Hermer-Vazquez
R
,
Moxon
KA
,
Kuo
KH
,
Viau
V
,
Zhan
Y
, et al
.
Distinct temporal activity patterns in the rat M1 and red nucleus during skilled versus unskilled limb movement
.
Behav Brain Res
.
2004
;
150
(
1–2
):
93
107
.
62.
Marder
E
,
Rehm
KJ
.
Development of central pattern generating circuits
.
Curr Opin Neurobiol
.
2005
;
15
(
1
):
86
93
.
63.
Babin
PJ
,
Goizet
C
,
Raldúa
D
.
Zebrafish models of human motor neuron diseases: advantages and limitations
.
Prog Neurobiol
.
2014
;
118
:
36
58
.
64.
Delvolvé
I
,
Bem
T
,
Cabelguen
JM
.
Epaxial and limb muscle activity during swimming and terrestrial stepping in the adult newt, Pleurodeles waltl
.
J Neurophysiol
.
1997
;
78
(
2
):
638
50
.
65.
Ijspeert
AJ
.
A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander
.
Biol Cybern
.
2001
;
84
(
5
):
331
48
.
66.
McPherson
DR
,
Buchanan
JT
,
Kasicki
S
.
Effects of strychnine on fictive swimming in the lamprey: evidence for glycinergic inhibition, discrepancies with model predictions, and novel modulatory rhythms
.
J Comp Physiol
.
1994
;
175
(
3
):
311
21
.
67.
Grillner
S
,
Jalalvand
E
,
Wallén
P
.
The lamprey locomotor central pattern generator
. In:
Shepherd
GM
,
Grillner
S
, editors.
Handbook of brain microcircuits
.
Oxford University Press
;
2017
. p.
527
34
.
68.
Cohen
AH
.
Intersegmental coordinating system of the lamprey central pattern generator for locomotion
.
J Comp Physiol
.
1987
;
160
(
2
):
181
93
.
69.
Romer
AS
.
The vertebrate body
. 5th ed.
Philadelphia, USA
:
WB Saunders Company
;
1977
.
70.
Pellis
SM
,
Pellis
VC
,
Burke
CJ
,
Stark
RA
,
Ham
JR
,
Euston
DR
, et al
.
Measuring play fighting in rats: a multilayered approach
.
Curr Protoc
.
2022
;
2
(
1
):
e337
.
71.
Eilam
D
.
From an animal model to human patients: an example of a translational study on obsessive compulsive disorder (OCD)
.
Neurosci Biobehav Rev
.
2017
;
76
(
Pt A
):
67
76
.
72.
Walker
MC
,
White
HS
,
Sander
JWAS
.
Disease modification in partial epilepsy
.
Brain
.
2002
;
125
(
Pt 9
):
1937
50
.
73.
Geraghty
JR
,
Senador
D
,
Maharathi
B
,
Butler
MP
,
Sudhakar
D
,
Smith
RA
, et al
.
Modulation of locomotor behaviors by location-specific epileptic spiking and seizures
.
Epilepsy Behav
.
2021
;
114
(
Pt A
):
107652
.
74.
Marrie
RA
,
Allegretta
M
,
Barcellos
LF
,
Bebo
B
,
Calabresi
PA
,
Correale
J
, et al
.
From the prodromal stage of multiple sclerosis to disease prevention
.
Nat Rev Neurol
.
2022
;
18
(
9
):
559
72
.
75.
Gilmour
GS
,
Lidstone
SC
.
Moving beyond movement: diagnosing functional movement disorder
.
Semin Neurol
.
2023
;
43
(
1
):
106
22
.
76.
Flinn
L
,
Bretaud
S
,
Lo
C
,
Ingham
PW
,
Bandmann
O
.
Zebrafish as a new animal model for movement disorders
.
J Neurochem
.
2008
;
106
(
5
):
1991
7
.
77.
Stewart
AM
,
Gerlai
R
,
Kalueff
AV
.
Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery
.
Front Behav Neurosci
.
2015
;
9
:
14
.
78.
Kuroda
S
,
Kunita
I
,
Tanaka
Y
,
Ishiguro
A
,
Kobayashi
R
,
Nakagaki
T
.
Common mechanics of mode switching in locomotion of limbless and legged animals
.
J R Soc Interf
.
2014
;
11
(
95
):
20140205
.
79.
Katz
PS
.
Evolution of central pattern generators and rhythmic behaviours
.
Philos Trans R Soc Lond B Biol Sci
.
2016
;
371
(
1685
):
20150057
.
80.
King
HM
,
Shubin
NH
,
Coates
MI
,
Hale
ME
.
Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes
.
Proc Natl Acad Sci USA
.
2011
;
108
(
52
):
21146
51
.
81.
Schuchmann
M
,
Siemers
BM
.
Behavioral evidence for community-wide species discrimination from echolocation calls in bats
.
Am Nat
.
2010
;
176
(
1
):
72
82
.
82.
Hale
ME
,
Galdston
S
,
Arnold
BW
,
Song
C
.
The water to land transition submerged: multifunctional design of pectoral fins for use in swimming and in association with underwater substrate
.
Integr Comp Biol
.
2022
;
62
(
4
):
908
21
.
83.
Kanwal
JS
,
Sanghera
B
,
Dabbi
R
,
Glasgow
E
.
Pose analysis in free-swimming adult zebrafish, Danio rerio: “fishy” origins of movement design
.
BioRxiv
.
2024
:
2023.12.31.573780
.
84.
Kanwal
JS
.
Pose analysis data
.
You do not currently have access to this content.