Article PDF first page preview

Article PDF first page preview

Introduction: The octopus peduncle complex is an agglomeration of neural structures with remarkably diverse functional roles. The complex rests on the optic tract, between the optic lobe and the central brain, and comprises the peduncle lobe proper, the olfactory lobe, and the optic gland. The peduncle lobe regulates visuomotor behaviors, the optic glands control sexual maturation and maternal death, and the olfactory lobe is thought to receive input from the olfactory organ. Recent transcriptomic and metabolomic studies have identified candidate peptide and steroid ligands in the Octopus bimaculoides optic gland. Methods: With gene expression for these ligands and their biosynthetic enzymes, we show that optic gland neurochemistry extends beyond the traditional optic gland secretory tissue and into lobular territories. Results: A key finding is that the classically defined olfactory lobe is itself a heterogeneous territory and includes steroidogenic territories that overlap with cells expressing molluscan neuropeptides and the synthetic enzyme dopamine beta-hydroxylase. Conclusion: Our study reveals the neurochemical landscape of the octopus peduncle complex, highlighting the unexpected overlap between traditionally defined regions.

1.
Messenger
JB
.
The peduncle lobe: a visuo-motor centre in octopus
.
Proc R Soc Lond B Biol Sci
.
1967
;
167
(
1008
):
225
51
.
2.
Young
JZ
.
Anatomy of the nervous system of Octopus vulgaris
.
Oxford
:
Clarendon Press
;
1971
.
3.
Messenger
JB
,
Young
JZ
.
The nervous system of Loligo IV. The peduncle and olfactory lobes
.
Philos Trans R Soc Lond B Biol Sci
.
1997
;
285
(
1008
):
275
309
.
4.
Wells
MJ.
Octopus
:
physiology and behaviour of an advanced invertebrate
.
Springer Science & Business Media
;
1978
.
5.
Vosshall
LB
,
Stocker
RF
.
Molecular architecture of smell and taste in Drosophila
.
Annu Rev Neurosci
.
2007
;
30
(
3
):
505
33
.
6.
Eisthen
HL
.
Why are olfactory systems of different animals so similar
.
Brain Behav Evol
.
2002
;
59
(
5–6
):
273
93
.
7.
Hildebrand
JG
,
Shepherd
GM
.
Mechanisms of olfactory discrimination: converging evidence for common principles across phyla
.
Annu Rev Neurosci
.
1997
;
20
(
20
):
595
631
.
8.
Wells
MJ
,
Wells
J
.
Hormonal control of sexual maturity in octopus
.
J Exp Biol
.
1959
;
36
(
1
):
1
33
.
9.
Wells
MJ
,
Wells
J
.
Pituitary analogue in the octopus
.
Nature
.
1969
;
222
(
5190
):
293
4
.
10.
Wells
MJ
,
Wells
J
.
Optic gland implants and their effects on the gonads of Octopus
.
J Exp Biol
.
1975
;
62
(
3
):
579
88
.
11.
Wodinsky
J
.
Hormonal inhibition of feeding and death in octopus: control by optic gland secretion
.
Science
.
1977
;
198
(
4320
):
948
51
.
12.
Wang
ZY
,
Ragsdale
CW
.
Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death
.
J Exp Biol
.
2018
;
221
(
Pt 19
):
jeb185751
.
13.
Wang
ZY
,
Pergande
MR
,
Ragsdale
CW
,
Cologna
SM
.
Steroid hormones of the octopus self-destruct system
.
Curr Biol
.
2022
;
32
(
11
):
2572
9.e4
.
14.
Di Cristo
C
,
Delli Bovi
P
,
Di Cosmo
A
.
Role of FMRFamide in the reproduction of Octopus vulgaris: molecular analysis and effect on visual input
.
Peptides
.
2003
;
24
(
10
):
1525
32
.
15.
Minakata
H
,
Shigeno
S
,
Kano
N
,
Haraguchi
S
,
Osugi
T
,
Tsutsui
K
.
Octopus gonadotrophin-releasing hormone: a multifunctional peptide in the endocrine and nervous systems of the cephalopod
.
J Neuroendocrinol
.
2009
;
21
(
4
):
322
6
.
16.
Minakata
H
.
Neuropeptides and peptide hormones in the octopus brain
. In:
Tanabe
K
,
Shigeta
Y
,
Sasaki
T
,
Hirano
H
, editors.
Cephalopods: past and present
.
Tokyo
:
Tokai University Press
;
2010
. p.
7
14
.
17.
Jung
SH
,
Song
HY
,
Hyun
YS
,
Kim
YC
,
Whang
I
,
Choi
TY
, et al
.
A brain atlas of the long arm Octopus, Octopus minor
.
Exp Neurobiol
.
2018
;
27
(
4
):
257
66
.
18.
Fiorito
G
,
Affuso
A
,
Basil
J
,
Cole
A
,
de Girolamo
P
,
D’Angelo
L
, et al
.
Guidelines for the care and welfare of cephalopods in research: A consensus based on an initiative by CephRes, FELASA and the Boyd Group
.
Lab Anim
.
2015
;
49
(
2 Suppl l
):
1
90
.
19.
Lopes
VM
,
Sampaio
E
,
Roumbedakis
K
,
Tanaka
NK
,
Carulla
L
,
Gambús
G
, et al
.
Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures
.
Invert Neurosci
.
2017
;
17
(
3
):
8
.
20.
Albertin
CB
,
Simakov
O
,
Mitros
T
,
Wang
ZY
,
Pungor
JR
,
Edsinger-Gonzales
E
, et al
.
The octopus genome and the evolution of cephalopod neural and morphological novelties
.
Nature
.
2015
;
524
(
7564
):
220
4
.
21.
Uetsuki
T
,
Naito
A
,
Nagata
S
,
Kaziro
Y
.
Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1α
.
J Biol Chem
.
1989
;
264
(
10
):
5791
8
.
22.
Bankhead
P
,
Loughrey
MB
,
Fernández
JA
,
Dombrowski
Y
,
McArt
DG
,
Dunne
PD
, et al
.
QuPath: open source software for digital pathology image analysis
.
Sci Rep
.
2017
;
7
(
1
):
16878
.
23.
Thiel
D
,
Franz-Wachtel
M
,
Aguilera
F
,
Hejnol
A
.
Xenacoelomorph neuropeptidomes reveal a major expansion of neuropeptide systems during early bilaterian evolution
.
Mol Biol Evol
.
2018
;
35
(
10
):
2528
43
.
24.
Southey
BR
,
Amare
A
,
Zimmerman
TA
,
Rodriguez-Zas
SL
,
Sweedler
JV
.
NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides
.
Nucleic Acids Res
.
2006
;
34
(
Web Server issue
):
W267
72
.
25.
Nielsen
H
.
Predicting secretory proteins with SignalP
. In:
Protein function prediction [internet
.
Humana Press
,
New York, NY
;
2017
[cited 2023 Nov 13]. p.
59
73
. Available from: https://link.springer.com/protocol/10.1007/978-1-4939-7015-5_6
26.
Altschul
SF
,
Gish
W
,
Miller
W
,
Myers
EW
,
Lipman
DJ
.
Basic local alignment search tool
.
J Mol Biol
.
1990
;
215
(
3
):
403
10
.
27.
Ferrè
F
,
Clote
P
.
DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification
.
Nucleic Acids Res
.
2006
;
34
(
Web Server issue
):
W182
5
.
28.
delle Chiaje
S
.
Memoria sulla storia e notomia degli animali senza vertebre del Regno di Napoli
,
Vol. IV
.
Napoli
:
Stamperia de’ fratelli Fernandes
;
1828
.
29.
Shigeno
S
,
Ragsdale
CW
.
The gyri of the octopus vertical lobe have distinct neurochemical identities
.
J Comp Neurol
.
2015
;
523
(
9
):
1297
317
.
30.
Winters
GC
,
Polese
G
,
Di Cosmo
A
,
Moroz
LL
.
Mapping of neuropeptide Y expression in Octopus brains
.
J Morphol
.
2020
;
281
(
7
):
790
801
.
31.
Songco-Casey
JO
,
Coffing
GC
,
Piscopo
DM
,
Pungor
JR
,
Kern
AD
,
Miller
AC
, et al
.
Cell types and molecular architecture of the Octopus bimaculoides visual system
.
Curr Biol
.
2022
;
32
(
23
):
5031
44.e4
.
32.
Kang
G
,
Allard
CAH
,
Valencia-Montoya
WA
,
van Giesen
L
,
Kim
JJ
,
Kilian
PB
, et al
.
Sensory specializations drive octopus and squid behaviour
.
Nature
.
2023
;
616
(
7956
):
378
83
.
33.
Allard
CAH
,
Kang
G
,
Kim
JJ
,
Valencia-Montoya
WA
,
Hibbs
RE
,
Bellono
NW
.
Structural basis of sensory receptor evolution in octopus
.
Nature
.
2023
;
616
(
7956
):
373
7
.
34.
Hanlon
RT
,
Messenger
JB
.
Cephalopod behaviour
. 2nd ed.
Cambridge
:
Cambridge University Press
;
2018
.
35.
Albertin
CB
,
Medina-Ruiz
S
,
Mitros
T
,
Schmidbaur
H
,
Sanchez
G
,
Wang
ZY
, et al
.
Genome and transcriptome mechanisms driving cephalopod evolution
.
Nat Commun
.
2022
;
13
(
1
):
2427
.
36.
Budelmann
BU
,
Schipp
R
,
von Boletzky
S
.
Cephalopoda
.
Microscopic anatomy of invertebrates. Mollusca II
.
Wiley-Liss
;
1997
. p.
119
414
.
37.
Di Cristo
C
,
Van Minnen
J
,
Di Cosmo
A
.
The presence of APGWamide in Octopus vulgaris: a possible role in the reproductive behavior
.
Peptides
.
2005
;
26
(
1
):
53
62
.
38.
Cropper
EC
,
Tenenbaum
R
,
Kolks
MA
,
Kupfermann
I
,
Weiss
KR
.
Myomodulin: a bioactive neuropeptide present in an identified cholinergic buccal motor neuron of Aplysia
.
Proc Natl Acad Sci
.
1987
;
84
(
15
):
5483
6
.
39.
Wang
Y
,
Price
DA
,
Sahley
CL
.
Identification and characterization of a myomodulin-like peptide in the leech
.
Peptides
.
1998
;
19
(
3
):
487
93
.
40.
Jing
J
,
Weiss
KR
.
Neural mechanisms of motor program switching in aplysia
.
J Neurosci
.
2001
;
21
(
18
):
7349
62
.
41.
Sweedler
JV
,
Li
L
,
Rubakhin
SS
,
Alexeeva
V
,
Dembrow
NC
,
Dowling
O
, et al
.
Identification and characterization of the feeding circuit-activating peptides, a novel neuropeptide family of Aplysia
.
J Neurosci
.
2002
;
22
(
17
):
7797
808
.
42.
Veenstra
JA
.
Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects
.
Gen Comp Endocrinol
.
2010
;
167
(
1
):
86
103
.
43.
Juorio
AV
,
Molinoff
PB
.
Distribution of octopamine in nervous tissues of Octopus vulgaris
.
Br J Pharmacol
.
1971
;
43
(
2
):
438P
.
44.
de Lange
RPJ
,
van Minnen
J
.
Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry
.
Gen Comp Endocrinol
.
1998
;
109
(
2
):
166
74
.
45.
Oberdörster
E
,
Romano
J
,
McClellan-Green
P
.
The neuropeptide APGWamide as a penis morphogenic factor (PMF) in gastropod mollusks
.
Integr Comp Biol
.
2005
;
45
(
1
):
28
32
.
46.
Woodhams
PL
,
Messenger
JB
.
A note on the ultrastructure of the octopus olfactory organ
.
Cell Tissue Res
.
1974
;
152
(
2
):
253
8
.
47.
Gilly
WF
,
Lucero
MT
.
Behavioral responses to chemical stimulation of the olfactory organ in the squid Loligo opalescens
.
J Exp Biol
.
1992
;
162
(
1
):
209
29
.
48.
Bonichon
A
.
Contribution a l’étude de la neurosécrétion et de l’endocrinologie chez les céphalopodes I. Octopus vulgaris
.
Vie Milieu
.
1967
:
227
64
.
49.
Fiorito
G
,
Affuso
A
,
Anderson
DB
,
Basil
J
,
Bonnaud
L
,
Botta
G
, et al
.
Cephalopods in neuroscience: regulations, research and the 3Rs
.
Invert Neurosci
.
2014
;
14
(
1
):
13
36
.
You do not currently have access to this content.