Background: The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. Summary: Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. Key Messages: The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.

1.
García-Moreno
F
,
Molnár
Z
.
Variations of telencephalic development that paved the way for neocortical evolution
.
Prog Neurobiol
.
2020
;
194
:
101865
. .
2.
Baer KE von. Über Entwickelungsgeschichte der Thiere. Beobachtung und Reflexion. Königsberg, Bei den Gebrüdern Bornträger.
3.
Abzhanov
A
.
von Baer’s law for the ages: lost and found principles of developmental evolution
.
Trends Genet
.
2013
;
29
(
12
):
712
22
. .
4.
Haeckel
E
.
Generelle morphologie der organismen. Allgemeine grundzüge der organischen formen-wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte descendenztheorie
.
Berlin
,
G Reimer
[cited 2024 Jan 15]. Available from: https://archive.org/details/generellemorphol01haec/mode/2up1866.
5.
Gould
SJ
.
Ontogeny and phylogeny--revisited and reunited
.
Bioessays
.
1992
;
14
(
4
):
275
9
. .
6.
Raff
RA
.
The shape of life: genes, development, and the evolution of animal form
.
1996
. p.
520
.
7.
Duboule
D
.
Temporal colinearity and the phylotypic progression= a basis for the stability of avertebrate Bauplan and the evolution of morphologies through heterochrony
.
Development
.
1994
:
135
42
.
8.
Steventon
B
,
Busby
L
,
Arias
AM
.
Establishment of the vertebrate body plan: rethinking gastrulation through stem cell models of early embryogenesis
.
Dev Cell
.
2021
;
56
(
17
):
2405
18
. .
9.
Watson
C
,
Paxinos
G
,
Puelles
L
.
The mouse nervous system
.
Elsevier
.
10.
Puelles
L
,
Ferran
JL
.
Concept of neural genoarchitecture and its genomic fundament
.
Front Neuroanat
.
2012
;
6
:
47
8
. .
11.
Albuixech-Crespo
B
,
López-Blanch
L
,
Burguera
D
,
Maeso
I
,
Sánchez-Arrones
L
,
Moreno-Bravo
JA
, et al
.
Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain
.
PLoS Biol
;
15
(
4
):
e2001573
. .
12.
Quint
M
,
Drost
HG
,
Gabel
A
,
Ullrich
KK
,
Bönn
M
,
Grosse
I
.
A transcriptomic hourglass in plant embryogenesis
.
Nature
.
2012
;
490
:
98
101
. .
13.
Irie
N
,
Kuratani
S
.
Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis
.
Nat Commun
.
2011
;
2
:
248
. .
14.
Levin
M
,
Anavy
L
,
Cole
AG
,
Winter
E
,
Mostov
N
,
Khair
S
, et al
.
The mid-developmental transition and the evolution of animal body plans
.
Nature
.
2016
;
531
:
637
41
. .
15.
Richardson
MK
.
Heterochrony and the phylotypic period
.
Dev Biol
.
1995
;
172
(
2
):
412
21
. .
16.
Cardoso-Moreira
M
,
Halbert
J
,
Valloton
D
,
Velten
B
,
Chen
C
,
Shao
Y
, et al
.
Gene expression across mammalian organ development
.
Nature
.
2019
;
571
(
7766
):
505
9
. .
17.
Adameyko
I
.
Evolutionary origin of the neural tube in basal deuterostomes
.
Curr Biol
.
2023
;
33
(
8
):
R319
31
. .
18.
Colas
JF
,
Schoenwolf
GC
.
Towards a cellular and molecular understanding of neurulation
.
Dev Dyn
.
2001
;
221
(
2
):
117
45
. .
19.
Nikolopoulou
E
,
Galea
GL
,
Rolo
A
,
Greene
NDE
,
Copp
AJ
.
Neural tube closure: cellular, molecular and biomechanical mechanisms
.
Development
.
2017
;
144
(
4
):
552
66
. .
20.
Harrington
MJ
,
Hong
E
,
Brewster
R
.
Comparative analysis of neurulation: first impressions do not count
.
Mol Reprod Dev
.
2009
;
76
(
10
):
954
65
. .
21.
Pani
AM
,
Mullarkey
EE
,
Aronowicz
J
,
Assimacopoulos
S
,
Grove
EA
,
Lowe
CJ
.
Ancient deuterostome origins of vertebrate brain signalling centres
.
Nature
.
2012
;
483
(
7389
):
289
94
. .
22.
Tosches
MA
,
Arendt
D
.
The bilaterian forebrain: an evolutionary chimaera
.
Curr Opin Neurobiol
.
2013
;
23
(
6
):
1080
9
. .
23.
Benito-Gutiérrez
È
,
Gattoni
G
,
Stemmer
M
,
Rohr
SD
,
Schuhmacher
LN
,
Tang
J
, et al
.
The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon
.
BMC Biol
.
2021
;
19
(
1
):
110
. .
24.
Solnica-Krezel
L
.
Conserved patterns of cell movements during vertebrate gastrulation
.
Curr Biol
.
2005
;
15
(
6
):
R213
28
. .
25.
Fujii
S
,
Nishio
T
,
Nishida
H
.
Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioica
.
Dev Genes Evol
.
2008
;
218
(
2
):
69
79
. .
26.
Le Petillon
Y
,
Luxardi
G
,
Scerbo
P
,
Cibois
M
,
Leon
A
,
Subirana
L
, et al
.
Nodal/activin pathway is a conserved neural induction signal in chordates
.
Nat Ecol Evol
.
2017
;
1
(
8
):
1192
200
. .
27.
Lapraz
F
,
Haillot
E
,
Lepage
T
.
A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms
.
Nat Commun
.
2015
;
6
:
8927
. .
28.
Spemann
H
,
Mangold
H
.
über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren
.
Arch Mikrosk Anat Enwicklmech
.
1924
;
100
(
3–4
):
599
638
. .
29.
Spemann
H
,
Mangold
H
.
Induction of embryonic primordia by implantation of organizers from a different species
.
Int J Dev Biol
.
2001
;
45
(
1
):
13
38
.
30.
Wilson
SW
,
Houart
C
.
Early steps in the development of the forebrain
.
Dev Cell
.
2004
;
6
(
2
):
167
81
. .
31.
Stern
CD
,
Downs
KM
.
The hypoblast (visceral endoderm): an evo-devo perspective
.
Development
.
2012
;
139
(
6
):
1059
69
. .
32.
Foley
AC
,
Storey
KG
,
Stern
CD
.
The prechordal region lacks neural inducing ability, but can confer anterior character to more posterior neuroepithelium
.
Development
.
1997
;
124
(
15
):
2983
96
. .
33.
Papalopulu
N
,
Kintner
C
.
A posteriorising factor, retinoic acid, reveals that anteroposterior patterning controls the timing of neuronal differentiation in Xenopus neuroectoderm
.
Development
.
1996
;
122
(
11
):
3409
18
. .
34.
Meister
L
,
Escriva
H
,
Bertrand
SS
.
Functions of the FGF signalling pathway in cephalochordates provide insight into the evolution of the prechordal plate
.
Development
.
1996
;
146
(
10
):
dev200252
. .
35.
Pownall
ME
,
Isaacs
HV
.
FGF signalling in vertebrate development
. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53164/2010.
36.
Ybot-Gonzalez
P
,
Gaston-Massuet
C
,
Girdler
G
,
Klingensmith
J
,
Arkell
R
,
Greene
NDE
, et al
.
Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling
.
Development
.
2007
;
134
(
17
):
3203
11
. .
37.
Furuta
Y
,
Piston
DW
,
Hogan
BLM
.
Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development
.
Development
.
1997
;
124
(
11
):
2203
12
. .
38.
Zhao
T
,
Gan
Q
,
Stokes
A
,
Lassiter
RNT
,
Wang
Y
,
Chan
J
, et al
.
β-catenin regulates Pax3 and Cdx2 for caudal neural tube closure and elongation
.
Development
.
2014
;
141
(
1
):
148
57
. .
39.
Sanchez-Ferras
O
,
Coutaud
B
,
Djavanbakht Samani
T
,
Tremblay
I
,
Souchkova
O
,
Pilon
N
.
Caudal-related homeobox (cdx) protein-dependent integration of canonical wnt signaling on paired-box 3 (Pax3) neural crest enhancer
.
J Biol Chem
.
2012
;
287
(
20
):
16623
35
. .
40.
Giger
FA
,
Houart
C
.
The birth of the eye vesicle: when fate decision equals morphogenesis
.
Front Neurosci
.
2018
;
12
:
12
. .
41.
Kicheva
A
,
Briscoe
J
.
Control of tissue development by morphogens
.
Annu Rev Cell Dev Biol
.
2023
;
39
:
91
121
. .
42.
Karfunkel
P
.
The mechanisms of neural tube formation
.
Int Rev Cytol
.
1974
;
38
(
0
):
245
71
. .
43.
Greene
NDE
,
Gerrelli
D
,
Van Straaten
HWM
,
Copp
AJ
.
Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (LP) mouse: a model of severe neural tube defects
.
Mech Dev
.
1998
;
73
(
1
):
59
72
. .
44.
Goto
T
,
Keller
R
.
The planar cell polarity gene Strabismus regulates convergence and extension and neural fold closure in Xenopus
.
Dev Biol
.
2002
;
247
(
1
):
165
81
. .
45.
Nishimura
T
,
Honda
H
,
Takeichi
M
.
Planar cell polarity links axes of spatial dynamics in neural-tube closure
.
Cell
.
2012
;
149
(
5
):
1084
97
. .
46.
Copp
AJ
,
Greene
NDE
,
Murdoch
JN
.
The genetic basis of mammalian neurulation
.
Nat Rev Genet
.
2003
;
4
(
10
):
784
93
. .
47.
Harris
WA
,
Hartenstein
V
.
Neuronal determination without cell division in Xenopus embryos
.
Neuron
.
1991
;
6
(
4
):
499
515
. .
48.
Lowery
LA
,
Sive
H
.
Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation
.
Mech Dev
.
2004
;
121
(
10
):
1189
97
. .
49.
Ciruna
B
,
Jenny
A
,
Lee
D
,
Mlodzik
M
,
Schier
AF
.
Planar cell polarity signalling couples cell division and morphogenesis during neurulation
.
Nature
.
2006
;
439
(
7073
):
220
4
. .
50.
Häkkänen-Nyholm
H
,
Putkonen
H
,
Lindberg
N
,
Holi
M
,
Rovamo
T
,
Weizmann-Henelius
G
.
Gender differences in Finnish homicide offence characteristics
.
Forensic Sci Int
.
2009
;
186
(
1–3
):
75
80
. .
51.
Tawk
M
,
Araya
C
,
Lyons
DA
,
Reugels
AM
,
Girdler
GC
,
Bayley
PR
, et al
.
A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis
.
Nature
.
2007
;
446
(
7137
):
797
800
. .
52.
McShane
SG
,
Molè
MA
,
Savery
D
,
Greene
NDE
,
Tam
PPL
,
Copp
AJ
.
Cellular basis of neuroepithelial bending during mouse spinal neural tube closure
.
Dev Biol
.
2015
;
404
(
2
):
113
24
. .
53.
Spear
PC
,
Erickson
CA
.
Apical movement during interkinetic nuclear migration is a two-step process
.
Dev Biol
.
2012
;
370
(
1
):
33
41
. .
54.
Schoenwolf
GC
,
Smith
JL
.
Mechanisms of neurulation: traditional viewpoint and recent advances
.
Development
.
1990
;
109
(
2
):
243
70
. .
55.
Davidson
LA
,
Keller
RE
.
Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension
.
Development
.
1999
;
126
(
20
):
4547
56
. .
56.
Hong
E
,
Brewster
R
.
N-cadherin is required for the polarized cell behaviors that drive neurulation in the zebrafish
.
Development
.
2006
;
133
(
19
):
3895
905
. .
57.
Geldmacher-Voss
B
,
Reugels
AM
,
Pauls
S
,
Campos-Ortega
JA
.
A 90-degree rotation of the mitotic spindle changes the orientation of mitoses of zebrafish neuroepithelial cells
.
Development
.
2003
;
130
(
16
):
3767
80
. .
58.
Araya
C
,
Ward
LC
,
Girdler
GC
,
Miranda
M
.
Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis
.
Dev Dyn
.
2016
;
245
(
3
):
197
208
. .
59.
Sauka-Spengler
T
,
Bronner-Fraser
M
.
Insights from a sea lamprey into the evolution of neural crest gene regulatory network
.
Biol Bull
.
2008
;
214
(
3
):
303
14
. .
60.
Häming
D
,
Simoes-Costa
M
,
Uy
B
,
Valencia
J
,
Sauka-Spengler
T
,
Bronner-Fraser
M
.
Expression of sympathetic nervous system genes in lamprey suggests their recruitment for specification of a new vertebrate feature
.
PLoS One
.
2011
;
6
(
10
):
e26543
. .
61.
Copp
AJ
,
Stanier
P
,
Greene
NDE
.
Neural tube defects: recent advances, unsolved questions, and controversies
.
Lancet Neurol
.
2013
;
12
(
8
):
799
810
. .
62.
Ginsburg
AS
,
Dettlaff
TA
.
The Russian sturgeon Acipenser güldenstädti. Part I. Gametes and early development up to time of hatching
. In:
Animal species for developmental studies
.
1991
. p.
15
65
.
63.
Handrigan
GR
.
Concordia discors: duality in the origin of the vertebrate tail
.
J Anat
.
2003
;
202
(
Pt 3
):
255
67
. .
64.
Shum
ASW
,
Copp
AJ
.
Regional differences in morphogenesis of the neuroepithelium suggest multiple mechanisms of spinal neurulation in the mouse
.
Anat Embryol
.
1996
;
194
(
1
):
65
73
. .
65.
Massa
V
,
Greene
NDE
,
Copp
AJ
.
Do cells become homeless during neural tube closure
.
Cell Cycle
.
2009
;
8
(
16
):
2479
80
. .
66.
Mak
LL
.
Ultrastructural studies of amphibian neural fold fusion
.
Dev Biol
.
1978
;
65
(
2
):
435
46
. .
67.
Alvarez
IS
,
Schoenwolf
GC
.
Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate
.
J Exp Zool
.
1992
;
261
(
3
):
340
8
. .
68.
Van Straaten
HWM
,
Janssen
HCJP
,
Peeters
MCE
,
Copp
AJ
,
Hekking
JWM
.
Neural tube closure in the chick embryo is multiphasic
.
Dev Dyn
.
1996
;
207
(
3
):
309
18
. .
69.
O’Rahilly
R
,
Müller
F
.
The two sites of fusion of the neural folds and the two neuropores in the human embryo
.
Teratology
.
2002
;
65
(
4
):
162
70
. .
70.
Copp
AJ
,
Greene
NDE
.
Genetics and development of neural tube defects
.
J Pathol
.
2010
;
220
(
2
):
217
30
. .
71.
Greene
NDE
,
Copp
AJ
.
Neural tube defects
.
Annu Rev Neurosci
.
2014
;
37
:
221
42
. .
72.
Juriloff
DM
,
Harris
MJ
.
Insights into the etiology of mammalian neural tube closure defects from developmental, genetic and evolutionary studies
.
J Dev Biol
.
2018
;
6
(
3
):
22
. .
73.
Feuda
R
,
Peter
IS
.
Homologous gene regulatory networks control development of apical organs and brains in Bilateria
.
Sci Adv
.
2022
;
8
(
44
):
2416
. .
74.
Poustka
AJ
,
Kühn
A
,
Radosavljevic
V
,
Wellenreuther
R
,
Lehrach
H
,
Panopoulou
G
.
On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo
.
Evol Dev
.
2004
;
6
(
4
):
227
36
. .
75.
Holland
ND
.
Walter garstang: a retrospective
.
Theor Biosciences
.
2011
;
130
(
4
):
247
58
. .
76.
Nieuwenhuys
R
.
Deuterostome brains: synopsis and commentary
.
Brain Res Bull
.
2002
;
57
(
3–4
):
257
70
. .
77.
Yaguchi
S
,
Yaguchi
J
,
Angerer
RC
,
Angerer
LM
,
Burke
RD
.
TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo
.
Dev Biol
.
2010
;
347
(
1
):
71
81
. .
78.
Su
YH
,
Chen
YC
,
Ting
HC
,
Fan
TP
,
Lin
CY
,
Wang
KT
, et al
.
BMP controls dorsoventral and neural patterning in indirect-developing hemichordates providing insight into a possible origin of chordates
.
Proc Natl Acad Sci USA
.
2019
;
116
(
26
):
12925
32
. .
79.
Lowe
CJ
,
Terasaki
M
,
Wu
M
,
Freeman
RM
,
Runft
L
,
Kwan
K
, et al
.
Dorsoventral patterning in hemichordates: insights into early chordate evolution
.
PLoS Biol
.
2006
;
4
(
9
):
e291
. .
80.
Kaji
T
,
Reimer
JD
,
Morov
AR
,
Kuratani
S
,
Yasui
K
.
Amphioxus mouth after dorso-ventral inversion
.
Zoolog Lett
.
2016
;
2
:
2
14
. .
81.
Ivanova-Kazas
OM
.
Origin of chordata and the “upside-down theory”
.
Russ J Mar Biol
.
2008
;
34
(
6
):
391
402
. .
82.
Miyamoto
N
,
Wada
H
.
Hemichordate neurulation and the origin of the neural tube
.
Nat Commun
.
2013
;
4
:
2713
. .
83.
Kaul
S
,
Stach
T
.
Ontogeny of the collar cord: neurulation in the hemichordate saccoglossus kowalevskii
.
J Morphol
.
2010
;
271
(
10
):
1240
59
. .
84.
Conklin
EG
.
The embryology of amphioxus
.
J Morphol
.
1932
;
54
(
1
):
69
151
. .
85.
Sobral
D
,
Tassy
O
,
Lemaire
P
.
Highly divergent gene expression programs can lead to similar chordate larval body plans
.
Curr Biol
.
2009
;
19
(
23
):
2014
9
. .
86.
Hudson
C
.
The central nervous system of ascidian larvae
.
Wiley Interdiscip Rev Dev Biol
.
2016
;
5
:
538
61
. .
87.
Veeman
MT
,
Newman-Smith
E
,
El-Nachef
D
,
Smith
WC
.
The ascidian mouth opening is derived from the anterior neuropore: reassessing the mouth/neural tube relationship in chordate evolution
.
Dev Biol
.
2010
;
344
(
1
):
138
49
. .
88.
Kiecker
C
.
The origins of the circumventricular organs
.
J Anat
.
2018
;
232
(
4
):
540
53
. .
89.
Schier
AF
,
Talbot
WS
.
Nodal signaling and the zebrafish organizer
.
Int J Dev Biol
.
2001
;
45
(
1
):
289
97
.
90.
Puelles
L
,
Rubenstein
JLR
.
A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model
.
Front Neuroanat
.
2015
;
9
:
27
. .
91.
Slack
J
.
Developmental biology: a Rosetta stone for pattern formation in animals
.
Nature
.
1984
;
310
:
364
5
. .
92.
Slack
JMW
,
Holland
PWH
,
Graham
CF
.
The zootype and the phylotypic stage
.
Nature
.
1993
;
361
:
490
2
. .
93.
Marlow
H
,
Tosches
MA
,
Tomer
R
,
Steinmetz
PR
,
Lauri
A
,
Larsson
T
, et al
.
Larval body patterning and apical organs are conserved in animal evolution
.
BMC Biol
.
2014
;
12
.
94.
Mizutani
CM
,
Bier
E
.
EvoD/Vo: the origins of BMP signalling in the neuroectoderm
.
Nat Rev Genet
.
2008
;
9
:
663
77
. .
95.
Holland
LZ
,
Carvalho
JE
,
Escriva
H
,
Laudet
V
,
Schubert
M
,
Shimeld
SM
, et al
.
Evolution of bilaterian central nervous systems: a single origin
.
Evodevo
.
2013
;
4
:
27
0
. .
96.
Martín-Durán
JM
,
Pang
K
,
Børve
A
,
HS
,
Furu
A
,
Cannon
JT
, et al
.
Convergent evolution of bilaterian nerve cords
.
Nature
.
2018
;
553
(
7686
):
45
50
. .
97.
Lemaire
P
,
Smith
WC
,
Nishida
H
.
Ascidians and the plasticity of the chordate developmental program
.
Curr Biol
.
2008
;
18
(
14
):
R620
31
. .
98.
Maden
M
.
Retinoic acid in the development, regeneration and maintenance of the nervous system
.
Nat Rev Neurosci
.
2007
;
8
(
10
):
755
65
. .
99.
Elkouby
YM
,
Frank
D
.
Induction of the Midbrain–Hindbrain Border
. [cited 2023 Nov 22]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53459.
100.
Gibbs
HC
,
Chang-Gonzalez
A
,
Hwang
W
,
Yeh
AT
,
Lekven
AC
.
Midbrain-hindbrain boundary morphogenesis: at the intersection of wnt and Fgf signaling
.
Front Neuroanat
.
2017
;
11
:
64
. .
101.
Joyner
AL
.
Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development
.
Trends Genet
.
1996
;
12
(
1
):
15
20
. .
102.
Di Bonito
M
,
Studer
M
.
Cellular and molecular underpinnings of neuronal assembly in the central auditory system during mouse development
.
Front Neural Circuits
.
2017
;
11
:
11
. .
103.
Schneider-Maunoury
S
,
Topilko
P
,
Seitandou
T
,
Levi
G
,
Cohen-Tannoudji
M
,
Pournin
S
, et al
.
Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain
.
Cell
.
1993
;
75
(
6
):
1199
214
. .
104.
Ofek
S
,
Wiszniak
S
,
Kagan
S
,
Tondl
M
,
Schwarz
Q
,
Kalcheim
C
.
Notch signaling is a critical initiator of roof plate formation as revealed by the use of RNA profiling of the dorsal neural tube
.
BMC Biol
.
2021
;
19
:
84
23
. .
105.
Ribes
V
,
Balaskas
N
,
Sasai
N
,
Cruz
C
,
Dessaud
E
,
Cayuso
J
, et al
.
Distinct Sonic Hedgehog signaling dynamics specify floor plate and ventral neuronal progenitors in the vertebrate neural tube
.
Genes Dev
.
2010
;
24
(
11
):
1186
200
. .
106.
Elms
P
,
Siggers
P
,
Napper
D
,
Greenfield
A
,
Arkell
R
.
Zic2 is required for neural crest formation and hindbrain patterning during mouse development
.
Dev Biol
.
2003
;
264
(
2
):
391
406
. .
107.
Krumlauf
R
,
Wilkinson
DG
.
Segmentation and patterning of the vertebrate hindbrain
.
Development
.
2021
;
148
(
15
):
dev186460
. .
108.
Liu
A
,
Joyner
AL
.
Early anterior/posterior patterning of the midbrain and cerebellum
.
Annu Rev Neurosci
.
2001
;
24
:
869
96
. .
109.
Trujillo
CM
,
Alonso
A
,
Delgado
AC
,
Damas
C
.
The rostral and caudal boundaries of the diencephalon
.
Brain Res Brain Res Rev
.
2005
;
49
(
2
):
202
10
. .
110.
Nakamura
H
.
Midbrain patterning: polarity formation of the tectum, midbrain regionalization, and isthmus organizer
. In:
Patterning and cell type specification in the developing CNS and PNS: comprehensive developmental neuroscience
. 2nd ed.
2020
. p.
87
106
.
111.
Agoston
Z
,
Li
N
,
Haslinger
A
,
Wizenmann
A
,
Schulte
D
.
Genetic and physical interaction of Meis2, Pax3 and Pax7 during dorsal midbrain development
.
BMC Dev Biol
.
2012
;
12
:
10
. .
112.
Royo
JL
,
Bessa
J
,
Hidalgo
C
,
Fernández-Miñán
A
,
Tena
JJ
,
Roncero
Y
, et al
.
Identification and analysis of conserved cis-regulatory regions of the MEIS1 gene
.
PLoS One
.
2012
;
7
(
3
):
e33617
. .
113.
Ohtoshi
A
,
Nishijima
I
,
Justice
MJ
,
Behringer
RR
.
Dmbx1, a novel evolutionarily conserved paired-like homeobox gene expressed in the brain of mouse embryos
.
Mech Dev
.
2002
;
110
(
1–2
):
241
4
. .
114.
Veerapathiran
S
,
Teh
C
,
Zhu
S
,
Kartigayen
I
,
Korzh
V
,
Matsudaira
PT
, et al
.
Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions
.
Elife
.
2020
;
9
:
e59489
. .
115.
Matsunaga
E
,
Araki
I
,
Nakamura
H
.
Role of Pax3/7 in the tectum regionalization
.
Development
.
2001
;
128
(
20
):
4069
77
. .
116.
Yan
CH
,
Levesque
M
,
Claxton
S
,
Johnson
RL
,
Ang
SL
.
Lmx1a and Lmx1b function cooperatively to regulate proliferation, specification, and differentiation of midbrain dopaminergic progenitors
.
J Neurosci
.
2011
;
31
(
35
):
12413
25
. .
117.
Sanchez-Arrones
L
,
Stern
CD
,
Bovolenta
P
,
Puelles
L
.
Sharpening of the anterior neural border in the chick by rostral endoderm signalling
.
Development
.
2012
;
139
(
5
):
1034
44
. .
118.
Kobayashi
D
,
Kobayashi
M
,
Matsumoto
K
,
Ogura
T
,
Nakafuku
M
,
Shimamura
K
.
Early subdivisions in the neural plate define distinct competence for inductive signals
.
Development
.
2002
;
129
(
1
):
83
93
. .
119.
Waite
MR
,
Skidmore
JM
,
Micucci
JA
,
Shiratori
H
,
Hamada
H
,
Martin
JF
, et al
.
Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development
.
Mol Cell Neurosci
.
2013
;
52
:
128
39
. .
120.
Lipiec
MA
,
Bem
J
,
Kozinski
K
,
Chakraborty
C
,
Urban-Ciećko
J
,
Zajkowski
T
, et al
.
TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus
.
Development
.
2013
;
147
(
16
):
dev190181
. .
121.
Braun
MM
,
Etheridge
A
,
Bernard
A
,
Robertson
CP
,
Roelink
H
.
Wnt signaling is required at distinct stages of development for the induction of the posterior forebrain
.
Development
.
2003
;
130
(
23
):
5579
87
. .
122.
Ferran
JL
,
Sánchez-Arrones
L
,
Sandoval
JE
,
Puelles
L
.
A model of early molecular regionalization in the chicken embryonic pretectum
.
J Comp Neurol
.
2007
;
505
(
4
):
379
403
. .
123.
Staudt
N
,
Houart
C
.
The prethalamus is established during gastrulation and influences diencephalic regionalization
.
PLoS Biol
.
2007
;
5
(
4
):
e69
888
. .
124.
Kim
DW
,
Place
E
,
Chinnaiya
K
,
Manning
E
,
Sun
C
,
Dai
W
, et al
.
Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors
.
Cell Rep
.
2022
;
38
(
3
):
110251
. .
125.
Borodovsky
N
,
Ponomaryov
T
,
Frenkel
S
,
Levkowitz
G
.
Neural protein olig2 acts upstream of the transcriptional regulator sim1 to specify diencephalic dopaminergic neurons
.
Dev Dyn
.
2009
;
238
(
4
):
826
34
. .
126.
Bedont
JL
,
Newman
EA
,
Blackshaw
S
.
Patterning, specification, and differentiation in the developing hypothalamus
.
Wiley Interdiscip Rev Dev Biol
.
2015
;
4
(
5
):
445
68
. .
127.
Houart
C
,
Caneparo
L
,
Heisenberg
CP
,
Barth
KA
,
Take-Uchi
M
,
Wilson
SW
.
Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling
.
Neuron
.
2002
;
35
(
2
):
255
65
. .
128.
Rohr
KB
,
Barth
KA
,
Varga
ZM
,
Wilson
SW
.
The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity
.
Neuron
.
2001
;
29
(
2
):
341
51
. .
129.
Manoli
M
,
Driever
W
.
nkx2.1 and nkx2.4 genes function partially redundant during development of the zebrafish hypothalamus, preoptic region, and pallidum
.
Front Neuroanat
.
2014
;
8
:
121656
. .
130.
Hébert
JM
,
Fishell
G
.
The genetics of early telencephalon patterning: some assembly required
.
Nat Rev Neurosci
.
2008
;
9
:
678
85
. .
131.
Morales-Delgado
N
,
Merchan
P
,
Bardet
SM
,
Ferrán
JL
,
Puelles
L
,
Díaz
C
.
Topography of somatostatin gene expression relative to molecular progenitor domains during ontogeny of the mouse hypothalamus
.
Front Neuroanat
.
2011
;
5
:
10
5
. .
132.
Morales
L
,
Castro-Robles
B
,
Abellán
A
,
Desfilis
E
,
Medina
L
.
A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala
.
J Comp Neurol
.
2021
;
529
(
10
):
2418
49
. .
133.
Yamamoto
K
,
Bloch
S
,
Vernier
P
.
New perspective on the regionalization of the anterior forebrain in Osteichthyes
.
Dev Growth Differ
.
2017
;
59
(
4
):
175
87
. .
134.
Stoykova
A
,
Treichel
D
,
Hallonet
M
,
Gruss
P
.
Pax6 modulates the dorsoventral patterning of the mammalian telencephalon
.
J Neurosci
.
2000
;
20
(
21
):
8042
50
. .
135.
Andreazzoli
M
,
Gestri
G
,
Angeloni
D
,
Menna
E
,
Barsacchi
G
.
Role of Xrx1 in Xenopus eye and anterior brain development
.
Development
.
1999
;
126
(
11
):
2451
60
. .
136.
Bielen
H
,
Houart
C
.
BMP signaling protects telencephalic fate by repressing eye identity and its cxcr4-dependent morphogenesis
.
Dev Cell
.
2012
;
23
(
4
):
812
22
. .
137.
Hernández-Bejarano
M
,
Gestri
G
,
Spawls
L
,
Nieto-López
F
,
Picker
A
,
Tada
M
, et al
.
Opposing Shh and Fgf signals initiate nasotemporal patterning of the zebrafish retina
.
Development
.
2015
;
142
(
22
):
3933
42
. .
138.
Puelles
L
,
Martinez-de-la-Torre
M
,
Bardet
S
,
Rubenstein
JLR
.
Hypothalamus
. In:
The mouse nervous system
.
2012
. p.
221
312
.
139.
Ferran
JL
,
Puelles
L
,
Rubenstein
JLR
.
Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus
.
Front Neuroanat
.
2015
;
9
:
46
. .
140.
Zhao
XF
,
Suh
CS
,
Prat
CR
,
Ellingsen
S
,
Fjose
A
.
Distinct expression of two foxg1 paralogues in zebrafish
.
Gene Expr Patterns
.
2009
;
9
(
5
):
266
72
. .
141.
La Manno
G
,
Gyllborg
D
,
Codeluppi
S
,
Nishimura
K
,
Salto
C
,
Zeisel
A
, et al
.
Molecular diversity of midbrain development in mouse, human, and stem cells
.
Cell
.
2016
;
167
(
2
):
566
80.e19
. .
142.
La Manno
G
,
Siletti
K
,
Furlan
A
,
Gyllborg
D
,
Vinsland
E
,
Mossi Albiach
A
, et al
.
Molecular architecture of the developing mouse brain
.
Nature
.
2021
;
596
:
92
6
. .
143.
Braun
E
,
Danan-Gotthold
M
,
Borm
LE
,
Lee
KW
,
Vinsland
E
,
Lönnerberg
P
, et al
.
Comprehensive cell atlas of the first-trimester developing human brain
.
Science
.
2023
;
382
(
6667
):
eadf1226
. .
144.
Raj
B
,
Farrell
JA
,
Liu
J
,
El Kholtei
J
,
Carte
AN
,
Navajas Acedo
J
, et al
.
Emergence of neuronal diversity during vertebrate brain development
.
Neuron
.
2020
;
108
(
6
):
1058
74.e6
. .
145.
Arendt
D
,
Tosches
MA
,
Marlow
H
.
From nerve net to nerve ring, nerve cord and brain – evolution of the nervous system
.
Nat Rev Neurosci
.
2016
;
17
(
1
):
61
72
. .
146.
Holland
PWH
,
Garcia-Fernàndez
J
.
HoxGenes and chordate evolution
.
Dev Biol
.
1996
;
173
(
2
):
382
95
. .
147.
Benito-Gutiérrez
E
.
A gene catalogue of the amphioxus nervous system
.
Int J Biol Sci
.
2006
;
2
(
3
):
149
60
. .
148.
Takahashi
T
.
The evolutionary origins of vertebrate midbrain and MHB: insights from mouse, amphioxus and ascidian Dmbx homeobox genes
.
Brain Res Bull
.
2005
;
66
(
4–6
):
510
7
. .
149.
Gattoni
G
,
Keitley
D
,
Sawle
A
,
Benito-Gutiérrez
E
.
An ancient gene regulatory network sets the position of the forebrain in chordates
.
bioRxiv
.
2023
.
150.
Robertshaw
E
,
Kiecker
C
.
Phylogenetic origins of brain organisers
.
Scientifica
.
2012
;
2012
:
475017
. .
151.
Irie
N
,
Kuratani
S
.
The developmental hourglass model: a predictor of the basic body plan
.
Development
.
2014
;
141
(
24
):
4649
55
. .
152.
Galis
F
,
Metz
JAJ
.
Evolutionary novelties: the making and breaking of pleiotropic constraints
.
Integr Comp Biol
.
2007
;
47
(
3
):
409
19
. .
153.
Hu
H
,
Uesaka
M
,
Guo
S
,
Shimai
K
,
Lu
TM
,
Li
F
, et al
.
Constrained vertebrate evolution by pleiotropic genes
.
Nat Ecol Evol
.
2017
;
1
:
1722
30
. .
154.
Hansen
TF
.
Is modularity necessary for evolvability? Remarks on the relationship between pleiotropy and evolvability
.
Biosystems
.
2003
;
69
(
2–3
):
83
94
. .
155.
Nieuwenhuys
R
,
Ten Donkelar
H
,
Nicholson
C
.
The central nervous system of vertebrates
.
Springer
;
1998
.
156.
Malatesta
P
,
Appolloni
I
,
Calzolari
F
.
Radial glia and neural stem cells
.
Cell Tissue Res
.
2008
;
331
(
1
):
165
78
. .
157.
Puelles
L
,
Amat
J
,
Martínez-De-La-Torre
M
.
Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of ache-positive neuroblasts up to stage HH18
.
J Comp Neurol
.
1987
;
266
(
2
):
247
68
. .
158.
Ware
M
,
Hamdi-Rozé
H
,
Le Friec
J
,
David
V
,
Dupé
V
.
Regulation of downstream neuronal genes by proneural transcription factors during initial neurogenesis in the vertebrate brain
.
Neural Dev
.
2016
;
11
:
22
15
. .
159.
Rueda-Alaña
E
,
García-Moreno
F
.
Time in neurogenesis: conservation of the developmental formation of the cerebellar circuitry
.
Brain Behav Evol
.
2022
;
97
(
1–2
):
33
47
. .
160.
Paolino
A
,
Haines
EH
,
Bailey
EJ
,
Black
DA
,
Moey
C
,
García-Moreno
F
, et al
.
Non-uniform temporal scaling of develop- mental processes in the mammalian cortex
.
Nat Commun
.
2023
;
14
(
1
):
5950
. .
161.
Herculano-Houzel
S
,
Catania
K
,
Manger
PR
,
Kaas
JH
.
Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass
.
Brain Behav Evol
.
2015
;
86
(
3–4
):
145
63
. .
162.
Olkowicz
S
,
Kocourek
M
,
Lučan
RK
,
Porteš
M
,
Fitch
WT
,
Herculano-Houzel
S
, et al
.
Birds have primate-like numbers of neurons in the forebrain
.
Proc Natl Acad Sci USA
.
2016
;
113
(
26
):
7255
60
. .
163.
Caviness
VS
,
Goto
T
,
Tarui
T
,
Takahashi
T
,
Bhide
PG
,
Nowakowski
RS
.
Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process
.
Cereb Cortex
.
2003
;
13
(
6
):
592
8
. .
164.
Verney
C
,
Takahashi
T
,
Bhide
PG
,
Nowakowski
RS
,
Caviness
VS
.
Independent controls for neocortical neuron production and histogenetic cell death
.
Dev Neurosci
.
2000
;
22
(
1–2
):
125
38
. .
165.
Sugiyama
M
,
Sakaue-Sawano
A
,
Iimura
T
,
Fukami
K
,
Kitaguchi
T
,
Kawakami
K
, et al
.
Illuminating cell-cycle progression in the developing zebrafish embryo
.
Proc Natl Acad Sci USA
.
2009
;
106
(
49
):
20812
7
. .
166.
Nomura
T
,
Gotoh
H
,
Ono
K
.
Changes in the regulation of cortical neurogenesis contribute to encephalization during amniote brain evolution
.
Nat Commun
.
2013
;
4
:
2206
. .
167.
Takahashi
T
,
Nowakowski
RS
,
Caviness
VS
Jr
.
Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse
.
J Neurosci
.
1993
;
13
(
2
):
820
33
. .
168.
Calegari
F
,
Haubensak
W
,
Haffner
C
,
Huttner
WB
.
Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development
.
J Neurosci
.
2005
;
25
(
28
):
6533
8
. .
169.
Picco
N
,
García-Moreno
F
,
Maini
PK
,
Woolley
TE
,
Molnár
Z
.
Mathematical modeling of cortical neurogenesis reveals that the founder population does not necessarily scale with neurogenic output
.
Cereb Cortex
.
2018
;
28
(
7
):
2540
50
. .
170.
Kornack
DR
,
Rakic
P
.
Changes in cell-cycle kinetics during the development and evolution of primate neocortex
.
Proc Natl Acad Sci USA
.
1998
;
95
(
3
):
1242
6
. .
171.
Krubitzer
L
,
Kaas
J
.
The evolution of the neocortex in mammals: how is phenotypic diversity generated
.
Curr Opin Neurobiol
.
2005
;
15
(
4
):
444
53
. .
172.
Workman
AD
,
Charvet
CJ
,
Clancy
B
,
Darlington
RB
,
Finlay
BL
.
Modeling transformations of neurodevelopmental sequences across mammalian species
.
J Neurosci
.
2013
;
33
(
17
):
7368
83
. .
173.
Schmidt
R
,
Strähle
U
,
Scholpp
S
.
Neurogenesis in zebrafish - from embryo to adult
.
Neural Dev
.
2013
;
8
:
3
13
. .
174.
Herculano-Houzel
S
,
Avelino-de-Souza
K
,
Neves
K
,
Porfírio
J
,
Messeder
D
,
Mattos Feijó
L
, et al
.
The elephant brain in numbers
.
Front Neuroanat
.
2014
;
8
:
46
. .
175.
Noctor
SC
,
Martinez-Cerdeño
V
,
Ivic
L
,
Kriegstein
AR
.
Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases
.
Nat Neurosci
.
2004
;
7
(
2
):
136
44
. .
176.
Fietz
SA
,
Kelava
I
,
Vogt
J
,
Wilsch-Bräuninger
M
,
Stenzel
D
,
Fish
JL
, et al
.
OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling
.
Nat Neurosci
.
2010
;
13
(
6
):
690
9
. .
177.
Nomura
T
,
Ohtaka-Maruyama
C
,
Yamashita
W
,
Wakamatsu
Y
,
Murakami
Y
,
Calegari
F
, et al
.
The evolution of basal progenitors in the developing non-mammalian brain
.
Development
.
2016
;
143
(
1
):
66
74
. .
178.
Cárdenas
A
,
Villalba
A
,
de Juan Romero
C
,
Picó
E
,
Kyrousi
C
,
Tzika
AC
, et al
.
Evolution of cortical neurogenesis in amniotes controlled by robo signaling levels
.
Cell
.
2018
;
174
(
3
):
590
606.e21
. .
179.
Nonaka-Kinoshita
M
,
Reillo
I
,
Artegiani
B
,
Martínez-Martínez
,
Nelson
M
,
Borrell
V
, et al
.
Regulation of cerebral cortex size and folding by expansion of basal progenitors
.
EMBO J
.
2013
;
32
(
13
):
1817
28
. .
180.
García-Moreno
F
,
Zoltán
M
.
The impact of different modes of neuronal migration on brain evolution
. In:
Cellular migration and formation of axons and dendrites
.
2020
. p.
555
76
.
181.
Rakic
P
.
Guidance of neurons migrating to the fetal monkey neocortex
.
Brain Res
.
1971
;
33
(
2
):
471
6
. .
182.
Smart
IHM
,
Dehay
C
,
Giroud
P
,
Berland
M
,
Kennedy
H
.
Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
.
Cereb Cortex
.
2002
;
12
(
1
):
37
53
. .
183.
Hevner
RF
.
From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development
.
Mol Neurobiol
.
2006
;
33
:
33
50
. .
184.
Lupo
G
,
Harris
WA
,
Lewis
KE
.
Mechanisms of ventral patterning in the vertebrate nervous system
.
Nat Rev Neurosci
.
2006
;
7
(
2
):
103
14
. .
185.
Butler
AB
,
William
H
.
Comparative vertebrate neuroanatomy: evolution and adaptation
.
2005
. p.
715
.
186.
Marín
O
,
Rubenstein
JLR
.
Cell migration in the forebrain
.
Annu Rev Neurosci
.
2003
;
26
:
441
83
. .
187.
Flames
N
,
Pla
R
,
Gelman
DM
,
Rubenstein
JLR
,
Puelles
L
,
Marin
O
.
Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes
.
J Neurosci
.
2007
;
27
(
36
):
9682
95
. .
188.
Anastasiades
PG
,
Butt
SJB
.
Decoding the transcriptional basis for GABAergic interneuron diversity in the mouse neocortex
.
Eur J Neurosci
.
2011
;
34
(
10
):
1542
52
. .
189.
Barber
M
,
Pierani
A
.
Tangential migration of glutamatergic neurons and cortical patterning during development: lessons from Cajal-Retzius cells
.
Dev Neurobiol
.
2016
;
76
(
8
):
847
81
. .
190.
Rueda-Alaña
E
,
Martínez-Garay
I
,
Encinas
JM
,
Molnár
Z
,
García-Moreno
F
.
Dbx1-Derived pyramidal neurons are generated locally in the developing murine neocortex
.
Front Neurosci
.
2018
;
12
:
792
10
. .
191.
García-Moreno
F
,
Anderton
E
,
Jankowska
M
,
Begbie
J
,
Encinas
JM
,
Irimia
M
, et al
.
Absence of tangentially migrating glutamatergic neurons in the developing avian brain
.
Cel Rep
.
2018
;
22
(
1
):
96
109
. .
192.
Bruguier
H
,
Suarez
R
,
Manger
P
,
Hoerder-Suabedissen
A
,
Shelton
AM
,
Oliver
DK
, et al
.
In search of common developmental and evolutionary origin of the claustrum and subplate
.
J Comp Neurol
.
2020
;
528
(
17
):
2956
77
. .
193.
Paredes
MF
,
Mora
C
,
Flores-Ramirez
Q
,
Cebrian-Silla
A
,
Del Dosso
A
,
Larimer
P
, et al
.
Nests of dividing neuroblasts sustain interneuron production for the developing human brain
.
Science
.
2022
;
375
(
6579
):
375
. .
194.
Aroca
P
,
Lorente-Cánovas
B
,
Mateos
FR
,
Puelles
L
.
Locus coeruleus neurons originate in alar rhombomere 1 and migrate into the basal plate: studies in chick and mouse embryos
.
J Comp Neurol
.
2006
;
496
(
6
):
802
18
. .
195.
Qu
Q
,
Crandall
JE
,
Luo
T
,
McCaffery
PJ
,
Smith
FI
.
Defects in tangential neuronal migration of pontine nuclei neurons in the Largemyd mouse are associated with stalled migration in the ventrolateral hindbrain
.
Eur J Neurosci
.
2006
;
23
(
11
):
2877
86
. .
196.
Lledo
PM
,
Valley
M
.
Adult olfactory bulb neurogenesis
.
Cold Spring Harb Perspect Biol
.
2016
;
8
(
8
):
a018945
. .
197.
Hashimoto
M
,
Hibi
M
.
Development and evolution of cerebellar neural circuits
.
Dev Growth Differ
.
2012
;
54
(
3
):
373
89
. .
198.
Butts
T
,
Green
MJ
,
Wingate
RJT
.
Development of the cerebellum: simple steps to make a “little brain”
.
Development
.
2014
;
141
(
21
):
4031
41
. .
199.
Butts
T
,
Modrell
MS
,
Baker
CVH
,
Wingate
RJT
.
The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish
.
Evol Dev
.
2014
;
16
(
2
):
92
100
. .
200.
Tosches
MA
,
Yamawaki
TM
,
Naumann
RK
,
Jacobi
AA
,
Tushev
G
,
Laurent
G
.
Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles
.
Science
.
2018
;
360
(
6391
):
881
8
. .
201.
Colquitt
BM
,
Merullo
DP
,
Konopka
G
,
Roberts
TF
,
Brainard
MS
,
Chase
C
.
Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits
.
Science
.
2021
;
371
(
6530
):
eabd9704
. .
202.
Hain
D
,
Gallego-Flores
T
,
Klinkmann
M
,
Macias
A
,
Ciirdaeva
E
,
Arends
A
, et al
.
Molecular diversity and evolution of neuron types in the amniote brain
.
Science
.
2022
;
377
(
6610
):
8202
. .
203.
Woych
J
,
Gurrola
AO
,
Deryckere
A
,
Jaeger
ECB
,
Gumnit
E
,
Merello
G
, et al
.
Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution
.
Science
.
2022
;
377
(
6610
):
eabp9186
. .
204.
Lamanna
F
,
Hervas-Sotomayor
F
,
Oel
AP
,
Jandzik
D
,
Sobrido-Cameán
D
,
Santos-Durán
GN
, et al
.
Publisher Correction: a lamprey neural cell type atlas illuminates the origins of the vertebrate brain
.
Nat Ecol Evol
.
2023
;
7
(
10
):
1741
. .
205.
Tasic
B
,
Yao
Z
,
Graybuck
LT
,
Smith
KA
,
Nguyen
TN
,
Bertagnolli
D
, et al
.
Shared and distinct transcriptomic cell types across neocortical areas
.
Nature
.
2018
;
563
:
72
8
. .
206.
Nomura
T
,
Yamashita
W
,
Gotoh
H
,
Ono
K
.
Species-specific mechanisms of neuron subtype specification reveal evolutionary plasticity of amniote brain development
.
Cell Rep
.
2018
;
22
(
12
):
3142
51
. .
207.
Lust
K
,
Maynard
A
,
Gomes
T
,
Fleck
JS
,
Camp
JG
,
Tanaka
EM
, et al
.
Single-cell analyses of axolotl forebrain organization, neurogenesis, and regeneration
.
Science
.
2022
;
377
(
6610
):
eabp9262
. .
208.
Cobos
I
,
Puelles
L
,
Martínez
S
.
The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (Dorsal Ventricular Ridge and Cortical Areas)
.
Dev Biol
.
2001
;
239
(
1
):
30
45
. .
209.
Metin
C
,
Alvarez
C
,
Moudoux
D
,
Vitalis
T
,
Pieau
C
,
Molnar
Z
.
Conserved pattern of tangential neuronal migration during forebrain development
.
Development
.
2007
;
134
(
15
):
2815
27
. .
210.
Moreno
N
,
González
A
,
Rétaux
S
.
Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments
.
Dev Neurobiol
.
2008
;
68
(
4
):
504
20
. .
211.
Carrera
I
,
Ferreiro-Galve
S
,
Sueiro
C
,
Anadón
R
,
Rodríguez-Moldes
I
.
Tangentially migrating GABAergic cells of subpallial origin invade massively the pallium in developing sharks
.
Brain Res Bull
.
2008
;
75
(
2–4
):
405
9
. .
212.
Kim
SN
,
Viswanadham
VV
,
Doan
RN
,
Dou
Y
,
Bizzotto
S
,
Khoshkhoo
S
, et al
.
Cell lineage analysis with somatic mutations reveals late divergence of neuronal cell types and cortical areas in human cerebral cortex
.
bioRxiv
.
2023
:
2023.11.06.565899
. .
213.
Delgado
RN
,
Allen
DE
,
Keefe
MG
,
Mancia Leon
WR
,
Ziffra
RS
,
Crouch
EE
, et al
.
Individual human cortical progenitors can produce excitatory and inhibitory neurons
.
Nature
.
2022
;
601
(
7893
):
397
403
. .
214.
Shanahan
M
,
Bingman
VP
,
Shimizu
T
,
Wild
M
,
Güntürkün
O
.
Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis
.
Front Comput Neurosci
.
2013
;
7
:
89
. .
215.
Suarez
LE
,
Yovel
Y
,
van den Heuvel
MP
,
Sporns
O
,
Assaf
Y
,
Lajoie
G
, et al
.
A connectomics-based taxonomy of mammals
.
Elife
.
2022
;
11
:
78635
. .
216.
Northcutt
RG
,
Butler
AB
.
Evolution of reptilian visual systems: retinal projections in a nocturnal lizard, Gekko gecko (linnaeus)
.
J Comp Neurol
.
1974
;
157
(
4
):
453
65
. .
217.
Butler
AB
.
Evolution of the thalamus: a morphological and functional review
.
Thalamus & Related Systems
.
2008
;
4
(
01
):
35
58
.
218.
Kebschul
JM
,
Richman
EB
,
Ringach
N
,
Friedmann
D
,
Albarran
E
,
Kolluru
SS
, et al
.
Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set
.
Science
.
1979
;
370
(
6523
):
eabd5059
. .
You do not currently have access to this content.