Introduction: Neural exaptations represent descent via transitions to novel neural functions. A primary transition in human cognitive and neural evolution was from a predominantly socially oriented primate brain to a brain that also instantiates and subserves science, technology, and engineering, all of which depend on mathematics. Upon what neural substrates and upon what evolved cognitive mechanisms did human capacities for science, technology, engineering, and mathematics (STEM), and especially its mathematical underpinnings, emerge? Previous theory focuses on roles for tools, language, and arithmetic in the cognitive origins of STEM, but none of these factors appears sufficient to support the transition. Methods: In this article, I describe and evaluate a novel hypothesis for the neural origins and substrates of STEM-based cognition: that they are based in human kinship systems and human maximizing of inclusive fitness. Results: The main evidence for this hypothesis is threefold. First, as demonstrated by anthropologists, human kinship systems exhibit complex mathematical and geometrical structures that function under sets of explicit rules, and such systems and rules pervade and organize all human cultures. Second, human kinship underlies the core algebraic mechanism of evolution, maximization of inclusive fitness, quantified as personal reproduction plus the sum of all effects on reproduction of others, each multiplied by their coefficient of relatedness to self. This is the only “natural” equation expected to be represented in the human brain. Third, functional imaging studies show that kinship-related cognition activates frontal-parietal regions that are also activated in STEM-related tasks. In turn, the decision-making that integrates kinship levels with costs and benefits from alternative behaviors has recently been shown to recruit the lateral septum, a hub region that combines internal (from the prefrontal cortex, amygdala, and other regions) and external information relevant to social behavior, using a dedicated subsystem of neurons specific to kinship. Conclusions: Taken together, these lines of evidence suggest that kinship systems and kin-associated behaviors may represent exaptations for the origin of human STEM.

1.
Smith
JM
,
Szathmary
E
.
The major transitions in evolution
.
Oxford University Press
;
1997
.
2.
Gould
SJ
,
Vrba
ES
.
Exaptation—a missing term in the science of form
.
Paleobiology
.
1982
;
8
(
1
):
4
15
. .
3.
Miller
AH
,
Stroud
JT
,
Losos
JB
.
The ecology and evolution of key innovations
.
Trends Ecol Evol
.
2023
;
38
(
2
):
122
31
. .
4.
Dunbar
RI
,
Shultz
S
.
Social complexity and the fractal structure of group size in primate social evolution
.
Biol Rev Camb Philos Soc
.
2021
;
96
(
5
):
1889
906
. .
5.
Frith
U
,
Frith
C
.
The social brain: allowing humans to boldly go where no other species has been
.
Philos Trans R Soc Lond B Biol Sci
.
2010
;
365
(
1537
):
165
76
. .
6.
Atran
S
.
Folk biology and the anthropology of science: cognitive universals and cultural particulars
.
Behav Brain Sci
.
1998
;
21
(
4
):
547
609
. .
7.
Sterpetti
F
.
Mathematical knowledge, the analytic method, and naturalism
. In:
Bangu
S
, editor.
Naturalizing logico-mathematical knowledge
.
Routledge
;
2018
. p.
268
93
.
8.
Sterpetti
F
.
Mathematical knowledge and naturalism
.
Philosophia
.
2019
;
47
(
1
):
225
47
. .
9.
Navarrete
AF
,
Reader
SM
,
Street
SE
,
Whalen
A
,
Laland
KN
.
The coevolution of innovation and technical intelligence in primates
.
Philos Trans R Soc Lond B Biol Sci
.
2016
;
371
(
1690
):
20150186
. .
10.
Chomsky
N
.
Language and mind
.
Cambridge University Press
;
2006
.
11.
Dennett
DC
.
Précis of the intentional stance
.
Behav Brain Sci
.
1988
;
11
(
03
):
495
505
. .
12.
Baron-Cohen
S
,
Wheelwright
S
,
Stone
V
,
Rutherford
M
.
A mathematician, a physicist and a computer scientist with Asperger syndrome: performance on folk psychology and folk physics tests
.
Neurocase
.
1999
;
5
(
6
):
475
83
. .
13.
Dehaene
S
.
Evolution of human cortical circuits for reading and arithmetic: the “neuronal recycling” hypothesis
. In:
Dehaene
S
,
Duhamel
J-R
,
Hauser
MD
,
Rizzolatti
G
, editors.
From monkey brain to human brain
.
MIT Press
;
2005
. p.
133
57
.
14.
Stout
D
,
Chaminade
T
.
Stone tools, language and the brain in human evolution
.
Philos Trans R Soc Lond B Biol Sci
.
2012
;
367
(
1585
):
75
87
. .
15.
Putt
SS
,
Wijeakumar
S
,
Franciscus
RG
,
Spencer
JP
.
The functional brain networks that underlie Early Stone Age tool manufacture
.
Nat Hum Behav
.
2017
;
1
(
6
):
0102
. .
16.
Pargeter
J
,
Khreisheh
N
,
Stout
D
.
Understanding stone tool-making skill acquisition: experimental methods and evolutionary implications
.
J Hum Evol
.
2019
;
133
:
146
66
. .
17.
Amalric
M
,
Dehaene
S
.
A distinct cortical network for mathematical knowledge in the human brain
.
Neuroimage
.
2019
;
189
:
19
31
. .
18.
Krebs
N
.
Our best shot at truth: why humans evolved mathematical abilities
. In:
Frey
UJ
,
Störmer
C
,
Willführ
KP
, editors.
Essential building blocks of human nature
.
Springer
;
2011
. p.
123
41
.
19.
Dyble
M
,
Gardner
A
,
Vinicius
L
,
Migliano
AB
.
Inclusive fitness for in-laws
.
Biol Lett
.
2018
;
14
(
10
):
20180515
. .
20.
Greene
PJ
.
Promiscuity, paternity, and culture
.
Am Ethnol
.
1978
;
5
(
1
):
151
9
. .
21.
Hartung
J
.
Paternity and inheritance of wealth
.
Nature
.
1981
;
291
(
5817
):
652
4
. .
22.
Melotti
U
.
A sociobiological interpretation of the structures and functions of the human family
.
J Hum Evol
.
1984
;
13
(
1
):
81
90
. .
23.
Hartung
J
.
Matrilineal inheritance: new theory and analysis
.
Behav Brain Sci
.
1985
;
8
(
4
):
661
70
. .
24.
Qirko
HN
.
Fictive kinship and induced altruism
. In:
Shackelford
TK
,
Salmon
C
, editors.
The Oxford handbook of evolutionary family psychology
.
Oxford Academic
;
2011
. p.
310
28
.
25.
Chagnon
NA
.
Manipulating kinship rules: a form of male Yanomamö reproductive competition
. In:
Crong
L
,
Chagnon
N
,
Irons
W
, editors.
Adaptation and human behavior: an anthropological perspective
.
Routledge
;
2017
. p.
115
32
.
26.
Itao
K
,
Kaneko
K
.
Evolution of kinship structures driven by marriage tie and competition
.
Proc Natl Acad Sci
.
2020
;
117
(
5
):
2378
84
. .
27.
Itao
K
,
Kaneko
K
.
Emergence of kinship structures and descent systems: multi-level evolutionary simulation and empirical data analysis
.
Proc Biol Sci
.
2022
;
289
(
1969
):
20212641
. .
28.
Rácz
P
,
Passmore
S
,
Jordan
FM
.
Social practice and shared history, not social scale, structure cross-cultural complexity in kinship systems
.
Top Cogn Sci
.
2020
;
12
(
2
):
744
65
. .
29.
Atkins
JR
,
Barnard
A
,
Buchler
I
,
De Meur
G
,
Eyde
DB
,
Fischer
M
, et al
.
More complex formulae of generalized exchange [and comments and replies]
.
Curr Anthropol
.
1981
;
22
(
4
):
377
99
. .
30.
Ascher
M
,
Ascher
R
.
Ethnomathematics
.
Hist Sci
.
1986
;
24
(
2
):
125
44
. .
31.
Ascher
M
.
Ethnomathematics: a multicultural view of mathematical ideas
.
Chapman & Hall/CRC
;
1991
.
32.
Almeida
MW
.
Indigenous mathematics in the Amazon: kinship as algebra and geometry among the Cashinahua
. In:
Vandendriessche
E
,
Pinxten
R
, editors.
Indigenous knowledge and ethnomathematics
.
Springer International Publishing
;
2023
. p.
221
42
.
33.
Rauff
JV
.
The algebra of marriage: an episode in applied group theory
.
J Br Soc Hist Math
.
2016
;
31
(
3
):
230
44
. .
34.
Chahine
IC
.
Towards African humanicity: re-mythogolising Ubuntu through reflections on the ethnomathematics of African cultures
.
CriSTaL
.
2020
;
8
(
2
):
95
111
. .
35.
Almeida
MW
.
Is there mathematics in the forest? Science in the forest
.
Sci Past
.
2020
;
97
.
36.
Verran
H
.
Mathematics of yolngu aboriginal Australians
. In:
Selin
H
, editor.
Encyclopaedia of the history of science, technology, and medicine in non-western cultures
.
Springer
;
2008
. .
37.
Denham
WW
.
Alyawarra kinship, infant carrying, and alloparenting
.
Math Anthropol Cult Theor
.
2015
;
8
(
1
).
38.
Everett
D
.
Cultural constraints on grammar and cognition in Pirahã: another look at the design features of human language
.
Curr Anthropol
.
2005
;
46
(
4
):
621
46
. .
39.
Everett
D
.
Don’t sleep, there are snakes
.
Pantheon Books
;
2008
.
40.
Everett
C
,
Madora
K
.
Quantity recognition among speakers of an anumeric language
.
Cogn Sci
.
2012
;
36
(
1
):
130
41
. .
41.
Chagnon
NA
.
Chronic problems in understanding tribal violence and warfare
. In:
Bock
GR
,
Goode
JA
, editors.
Genetics of criminal and antisocial behaviour: ciba foundation symposium
.
John Wiley & Sons, Ltd.
;
2007
.
Vol. 194
; p.
202
36
.
42.
Feng
HY
.
The Chinese kinship system
.
Harvard University Press
;
1967
.
43.
Chen
C
.
A comparative study on English and Chinese kinship terms and their translation strategies
.
Theor Pract Lang Stud
.
2019
;
9
(
9
):
1237
42
. .
44.
Martzloff
JC
.
A history of Chinese mathematics
.
Springer
;
2007
.
45.
Rāshid
R
.
Founding figures and commentators in Arabic mathematics: a history of Arabic sciences and mathematics
.
Routledge
;
2012
.
46.
Hughes
B
.
Hawaiian number systems
.
Math Teach
.
1982
;
75
(
3
):
253
6
. .
47.
Bender
A
,
Beller
S
.
Numeral classifiers and counting systems in Polynesian and Micronesian languages: common roots and cultural adaptations
.
Ocean Ling
.
2006
;
45
(
2
):
380
403
. .
48.
Seema
M
.
Kinship and marriage among the Muslims
.
Int J Hum Soc Sci Invent
.
2013
;
2
(
9
):
63
7
.
49.
Strassmann
BI
,
Kurapati
NT
.
What explains patrilineal cooperation
.
Curr Anthropol
.
2016
;
57
(
S13
):
S118
30
. .
50.
Hamilton
WD
.
The genetical evolution of social behaviour. II
.
J Theor Biol
.
1964
;
7
(
1
):
17
52
. .
51.
Buckner
RL
,
Andrews-Hanna
JR
,
Schacter
DL
.
The brain’s default network: anatomy, function, and relevance to disease
.
Ann NY Acad Sci
.
2008
;
1124
(
1
):
1
38
. .
52.
Carroll
J
.
Imagination, the brain’s default mode network, and imaginative verbal artifacts
.
Evol Perspect Imag Cult
.
2020
:
31
52
.
53.
Bourke
AF
.
The validity and value of inclusive fitness theory
.
Proc Biol Sci
.
2011
;
278
(
1723
):
3313
20
. .
54.
Amalric
M
,
Dehaene
S
.
Origins of the brain networks for advanced mathematics in expert mathematicians
.
Proc Natl Acad Sci
.
2016
;
113
(
18
):
4909
17
. .
55.
Pischedda
D
,
Görgen
K
,
Haynes
JD
,
Reverberi
C
.
Neural representations of hierarchical rule sets: the human control system represents rules irrespective of the hierarchical level to which they belong
.
J Neurosci
.
2017
;
37
(
50
):
12281
96
. .
56.
Arsalidou
M
,
Pawliw-Levac
M
,
Sadeghi
M
,
Pascual-Leone
J
.
Brain areas associated with numbers and calculations in children: meta-analyses of fMRI studies
.
Dev Cogn Neurosci
.
2018
;
30
:
239
50
. .
57.
Wu
H
,
Ge
Y
,
Tang
H
,
Luo
YJ
,
Mai
X
,
Liu
C
.
Language modulates brain activity underlying representation of kinship terms
.
Sci Rep
.
2015
;
5
(
1
):
18473
. .
58.
Zou
X
,
Yan
Z
.
Sensitivity to kinship: from electrophysiological perspective
.
Open J Soc Sci
.
2017
;
5
(
2
):
70
81
. .
59.
Cantlon
JF
.
Math, monkeys, and the developing brain
.
Proc Natl Acad Sci
.
2012
;
109
(
Suppl 1
):
10725
32
. .
60.
Emerson
RW
,
Cantlon
JF
.
Early math achievement and functional connectivity in the fronto-parietal network
.
Dev Cogn Neurosci
.
2012
;
2
(
Suppl 1
):
S139
51
. .
61.
Clemens
AM
,
Wang
H
,
Brecht
M
.
The lateral septum mediates kinship behavior in the rat
.
Nat Comm
.
2020
;
11
(
1
):
3161
. .
62.
Rizzi-Wise
CA
,
Wang
DV
.
Putting together pieces of the lateral septum: multifaceted functions and its neural pathways
.
ENeuro
.
2021
;
8
(
6
):
ENEURO.0315
21.2021
. .
63.
Besnard
A
,
Leroy
F
.
Top-down regulation of motivated behaviors via lateral septum sub-circuits
.
Mol Psychiatry
.
2022
;
27
(
8
):
3119
28
. .
64.
Menon
R
,
Süß
T
,
Oliveira
VEd M
,
Neumann
ID
,
Bludau
A
.
Neurobiology of the lateral septum: regulation of social behavior
.
Trends Neurosci
.
2022
;
45
(
1
):
27
40
. .
65.
Crespi
BJ
.
Oxytocin, testosterone, and human social cognition
.
Biol Rev
.
2016
;
91
(
2
):
390
408
. .
66.
Clemens
AM
,
Brecht
M
.
Neural representations of kinship
.
Curr Opin Neurobiol
.
2021
;
68
:
116
23
. .
67.
Moll
J
,
Bado
P
,
de Oliveira-Souza
R
,
Bramati
IE
,
Lima
DO
,
Paiva
FF
, et al
.
A neural signature of affiliative emotion in the human septohypothalamic area
.
J Neurosci
.
2012
;
32
(
36
):
12499
505
. .
68.
Jones
M
.
Numerals and neural reuse
.
Synthese
.
2020
;
197
(
9
):
3657
81
. .
69.
Du
E
,
Chang
SW
.
Neural components of altruistic punishment
.
Front Neurosci
.
2015
;
9
:
26
. .
70.
Alexander
RD
.
Evolution of the human psyche
. In:
Mellars
P
,
Stringer
C
, editors.
The human revolution
.
University of Chicago Press
;
1989
. p.
455
513
.
71.
Crespi
BJ
,
Flinn
MV
,
Summers
K
.
Runaway social selection in human evolution
.
Front Ecol Evol
.
2022
;
10
:
894506
. .
You do not currently have access to this content.