Introduction: The study of non-laboratory species has been part of a broader effort to establish the basic organization of the mammalian neocortex, as these species may provide unique insights relevant to cortical organization, function, and evolution. Methods: In the present study, the organization of three somatosensory cortical areas of the medium-sized (5–11 kg body mass) Amazonian rodent, the paca (Cuniculus paca), was determined using a combination of electrophysiological microelectrode mapping and histochemical techniques (cytochrome oxidase and NADPH diaphorase) in tangential sections. Results: Electrophysiological mapping revealed a somatotopically organized primary somatosensory cortical area (S1) located in the rostral parietal cortex with a characteristic foot-medial/head-lateral contralateral body surface representation similar to that found in other species. S1 was bordered laterally by two regions housing neurons responsive to tactile stimuli, presumably the secondary somatosensory (S2) and parietal ventral (PV) cortical areas that evinced a mirror-reversal representation (relative to S1) of the contralateral body surface. The limits of the putative primary visual (V1) and primary auditory (A1) cortical areas, as well as the complete representation of the contralateral body surface in S1, were determined indirectly by the histochemical stains. Like the barrel field described in small rodents, we identified a modular arrangement located in the face representation of S1. Conclusions: The relative location, somatotopic organization, and pattern of neuropil histochemical reactivity in the three paca somatosensory cortical areas investigated are similar to those described in other mammalian species, providing additional evidence of a common plan of organization for the somatosensory cortex in the rostral parietal cortex of mammals.

1.
Kaas
JH
.
What, if anything, is SI? Organization of first somatosensory area of cortex
.
Physiol Rev
.
1983
;
63
(
1
):
206
31
. .
2.
Krubitzer
LA
,
Kahn
DM
.
Nature versus nurture revisited: an old idea with a new twist
.
Prog Neurobiol
.
2003
;
70
(
1
):
33
52
. .
3.
Kaas
JH
.
Topographic maps are fundamental to sensory processing
.
Brain Res Bull
.
1997
;
44
(
2
):
107
12
. .
4.
Huffman
KJ
,
Nelson
J
,
Clarey
J
,
Krubitzer
LA
.
Organization of somatosensory cortex in three species of marsupials, Dasyurus hallucatus, Dactylopsila trivirgata, and Monodelphis domestica: neural correlates of morphological specializations
.
J Comp Neurol
.
1999
;
403
(
1
):
5
32
. .
5.
Liao
CC
,
Gharbawie
OA
,
Qi
H
,
Kaas
JH
.
Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos
.
J Comp Neurol
.
2013
;
521
(
16
):
3768
90
. .
6.
Woolsey
TA
,
Welker
C
,
Schwartz
RH
.
Comparative anatomical studies of the SmL face cortex with special reference to the occurrence of “barrels” in layer IV
.
J Comp Neurol
.
1975
;
164
(
1
):
79
94
. .
7.
Haidarliu
S
,
Ahissar
E
.
Spatial organization of facial vibrissae and cortical barrels in the Guinea pig and golden hamster
.
J Comp Neurol
.
1997
;
385
(
4
):
515
27
. .
8.
Campi
KL
,
Krubitzer
LA
.
Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number
.
J Comp Neurol
.
2010
;
518
(
22
):
4491
512
. .
9.
Manger
PR
,
Cort
J
,
Ebrahim
N
,
Goodman
A
,
Henning
J
,
Karolia
M
, et al
.
Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction
.
Front Neuroanat
.
2008
;
2
:
5
. .
10.
Wilson
DE
,
Reeder
DM
.
Mammal species of the world. A taxonomic and geographic reference
. 3rd ed.
Baltimore
:
Johns Hopkins University Press
;
2005
; p.
142
.
11.
Rinderknecht
A
,
Blanco
RE
.
The largest fossil rodent
.
Proc Biol Sci
.
2008
;
275
(
1637
):
923
8
. .
12.
Eisenberg
J
.
Mammals of the neotropics
.
Chicago and London
:
The University of Chicago Press
;
1989
.
Vol. 1
; p.
329
418
.
13.
Schmidt
AR
,
Gariboldi
MC
,
Cortasa
SA
,
Proietto
S
,
Corso
MC
,
Inserra
PIF
, et al
.
Neocortical anatomy in the South American plains vizcacha, Lagostomus maximus, reveals different strategies in encephalic development among Hystricomorpha and Myomorpha rodents
.
Brain Behav Evol
.
2020
;
95
(
6
):
318
29
. .
14.
Silveira
LCL
,
Picanco-Diniz
CW
,
Oswaldo-Cruz
E
.
Distribution and size of ganglion cells in the retinae of large Amazon rodents
.
Vis Neurosci
.
1989
;
2
(
3
):
221
35
. .
15.
Sasahara
TH
,
Leal
LM
,
Spillantini
MG
,
Machado
MR
.
Organisation and tyrosine hydroxylase and calretinin immunoreactivity in the main olfactory bulb of paca (Cuniculus paca): a large caviomorph rodent
.
Neurochem Res
.
2015
;
40
(
4
):
740
6
. .
16.
Picanço-Diniz
CW
,
Oliveira
HL
,
Silveira
LCL
,
Oswaldo-Cruz
E
.
The visual cortex of the agouti (Dasyprocta aguti): architectonic subdivisions
.
Braz J Med Biol Res
.
1989
;
22
(
1
):
121
38
.
17.
Rocha
EG
,
Santiago
LF
,
Freire
MAM
,
Gomes-Leal
W
,
Dias
IA
, et al
.
Callosal axon arbors in the limb representations of the somatosensory cortex (SI) in the agouti (Dasyprocta primnolopha)
.
J Comp Neurol
.
2007
;
500
(
2
):
255
66
. .
18.
Freire
MAM
,
Rocha
EG
,
Oliveira
JLF
,
Guimaraes
JS
,
Silveira
LCL
,
Elston
GN
, et al
.
Morphological variability of NADPH diaphorase neurons across areas V1, V2, and V3 of the common agouti
.
Brain Res
.
2010
;
1318
:
52
63
. .
19.
da Rocha
EG
,
Freire
MAM
,
Bahia
CP
,
Pereira
A
,
Sosthenes
MCK
,
Silveira
LCL
, et al
.
Dendritic structure varies as a function of eccentricity in V1: a quantitative study of NADPH diaphorase neurons in the diurnal South American rodent agouti, Dasyprocta prymnolopha
.
Neuroscience
.
2012
;
216
:
94
102
. .
20.
Santiago
LF
,
Freire
MAM
,
Picanço-Diniz
CW
,
Franca
JG
,
Pereira
A
.
The organization and connections of Second somatosensory cortex in the agouti
.
Front Neuroanat
.
2018
;
12
:
118
. .
21.
Elston
GN
,
Elston
A
,
Freire
MAM
,
Gomes-Leal
W
,
Dias
IA
,
Pereira
A
Jr
, et al
.
Specialization of pyramidal cell structure in the visual areas V1, V2 and V3 of the South American rodent, Dasyprocta primnolopha
.
Brain Res
.
2006
;
1106
(
1
):
99
110
. .
22.
Freire
MAM
,
Gomes-Leal
W
,
Carvalho
WA
,
Guimaraes
JS
,
Franca
JG
,
Picanço-Diniz
CW
, et al
.
A morphometric study of the progressive changes on NADPH diaphorase activity in the developing rat's barrel field
.
Neurosci Res
.
2004
;
50
(
1
):
55
66
. .
23.
Wong-Riley
M
.
Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys
.
Brain Res
.
1979
;
162
(
2
):
201
17
. .
24.
Krubitzer
LA
.
The organization of lateral somatosensory cortex in primates and other mammals
. In:
Franzén
O
,
Johansson
R
,
Terenius
L
, editors.
Somesthesis and the neurobiology of the somatosensory cortex. Advances in life sciences
.
Basel, Switzerland
:
Birkhäuser Verlag
;
1996
. p.
173
85
.
25.
Kaas
JH
,
Qi
HX
,
Stepniewska
I
.
The evolution of parietal cortex in primates
.
Handb Clin Neurol
.
2018
;
151
:
31
52
. .
26.
Welker
C
.
Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat
.
Brain Res
.
1971
;
26
(
2
):
259
75
. .
27.
Dawson
DR
,
Killackey
HP
.
The organization and mutability of the forepaw and hindpaw representations in the somatosensory cortex of the neonatal rat
.
J Comp Neurol
.
1987
;
256
(
2
):
246
56
. .
28.
Pereira
A
Jr
,
Freire
MAM
,
Bahia
CP
,
Franca
JG
,
Picanço-Diniz
CW
.
The barrel field of the adult mouse SmI cortex as revealed by NADPH-diaphorase histochemistry
.
Neuroreport
.
2000
;
11
(
9
):
1889
92
. .
29.
Santiago
LF
,
Rocha
EG
,
Freire
MAM
,
Dias
IA
,
Lent
R
, et al
.
The organizational variability of the rodent somatosensory cortex
.
Rev Neurosci
.
2007
;
18
(
3–4
):
283
94
. .
30.
Sur
M
,
Nelson
RJ
,
Kaas
JH
.
The representation of the body surface in somatosensory area I of the grey squirrel
.
J Comp Neurol
.
1978
;
179
(
2
):
425
49
. .
31.
Krubitzer
LA
,
Campi
KL
,
Cooke
DF
.
All rodents are not the same: a modern synthesis of cortical organization
.
Brain Behav Evol
.
2011
;
78
(
1
):
51
93
. .
32.
Gould
HJ
3rd
.
Body surface maps in the somatosensory cortex of rabbit
.
J Comp Neurol
.
1986
;
243
(
2
):
207
33
. .
33.
Woolsey
TA
,
Van der Loos
H
.
The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units
.
Brain Res
.
1970
;
17
(
2
):
205
42
. .
34.
Weller
WL
.
SmI cortical barrels in an Australian marsupial, Trichosurus vulpecula (brush-tailed possum): structural organization, patterned distribution, and somatotopic relationships
.
J Comp Neurol
.
1993
;
337
(
3
):
471
92
. .
35.
Wallace
MN
,
Rutkowski
RG
,
Palmer
AR
.
Identification and localisation of auditory areas in Guinea pig cortex
.
Exp Brain Res
.
2000
;
132
(
4
):
445
56
. .
36.
Freire
MAM
,
Franca
JG
,
Picanço-Diniz
CW
,
Pereira
A
Jr
.
Neuropil reactivity, distribution and morphology of NADPH diaphorase type I neurons in the barrel cortex of the adult mouse
.
J Chem Neuroanat
.
2005
;
30
(
2–3
):
71
81
. .
37.
Sarko
DK
,
Leitch
DB
,
Girard
I
,
Sikes
RS
,
Catania
KC
.
Organization of somatosensory cortex in the Northern grasshopper mouse (Onychomys leucogaster), a predatory rodent
.
J Comp Neurol
.
2011
;
519
(
1
):
64
74
. .
38.
Wallace
MN
.
Histochemical demonstration of sensory maps in the rat and mouse cerebral cortex
.
Brain Res
.
1987
;
418
(
1
):
178
82
. .
39.
Freire
MAM
,
Faber
J
,
Picanço-Diniz
CW
,
Franca
JG
,
Pereira
A
.
Morphometric variability of nicotinamide adenine dinucleotide phosphate diaphorase neurons in the primary sensory areas of the rat
.
Neuroscience
.
2012
;
205
:
140
53
. .
40.
Elston
GN
,
Manger
PR
.
Pyramidal cells in V1 of African rodents are bigger, more branched and more spiny than those in primates
.
Front Neuroanat
.
2014
;
8
:
4
. .
41.
Krubitzer
LA
,
Kunzle
H
,
Kaas
JH
.
Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi)
.
J Comp Neurol
.
1997
;
379
(
3
):
399
414
. .
42.
Catania
KC
,
Collins
CE
,
Kaas
JH
.
Organization of sensory cortex in the East African hedgehog (Atelerix albiventris)
.
J Comp Neurol
.
2000
;
421
(
2
):
256
74
. .
43.
Catania
KC
,
Jain
N
,
Franca
JG
,
Volchan
E
,
Kaas
JH
.
The organization of somatosensory cortex in the short-tailed opossum (Monodelphis domestica)
.
Somatosens Mot Res
.
2000
;
17
(
1
):
39
51
. .
44.
Franca
JG
,
Volchan
E
,
Jain
N
,
Catania
KC
,
Oliveira
RL
,
Hess
FF
, et al
.
Distribution of NADPH-diaphorase cells in visual and somatosensory cortex in four mammalian species
.
Brain Res
.
2000
;
864
(
2
):
163
75
. .
45.
Franca
JG
,
do-Nascimento
JL
,
Picanço-Diniz
CW
,
Quaresma
JA
,
Silva
AL
.
NADPH-diaphorase activity in area 17 of the squirrel monkey visual cortex: neuropil pattern, cell morphology and laminar distribution
.
Braz J Med Biol Res
.
1997
;
30
(
9
):
1093
105
. .
46.
Walker
C
,
Sinha
MM
.
Somatotopic organization of Smll cerebral neocortex in albino rat
.
Brain Res
.
1972
;
37
(
1
):
132
6
. .
47.
Nelson
RJ
,
Sur
M
,
Kaas
JH
.
The organization of the second somatosensory area (SmII) of the grey squirrel
.
J Comp Neurol
.
1979
;
184
(
3
):
473
89
. .
48.
Carvell
GE
,
Simons
DJ
.
Somatotopic organization of the second somatosensory area (SII) in the cerebral cortex of the mouse
.
Somatosen Res
.
1986
;
3
:
213
37
. .
49.
Koralek
KA
,
Olavarria
J
,
Killackey
HP
.
Areal and laminar organization of corticocortical projections in the rat somatosensory cortex
.
J Comp Neurol
.
1990
;
299
(
2
):
133
50
. .
50.
Fabri
M
,
Burton
H
.
Ipsilateral cortical connections of primary somatic sensory cortex in rats
.
J Comp Neurol
.
1991
;
311
(
3
):
405
24
. .
51.
Henry
EC
,
Remple
MS
,
O’Riain
MJ
,
Catania
KC
.
Organization of somatosensory cortical areas in the naked mole-rat (Heterocephalus glaber)
.
J Comp Neurol
.
2006
;
495
(
4
):
434
52
. .
52.
Krubitzer
LA
,
Sesma
MA
,
Kaas
JH
.
Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels
.
J Comp Neurol
.
1986
;
250
(
4
):
403
30
. .
53.
Beck
PD
,
Pospichal
MW
,
Kaas
JH
.
Topography, architecture, and connections of somatosensory cortex in opossums: evidence for five somatosensory areas
.
J Comp Neurol
.
1996
;
366
(
1
):
109
33
. .
54.
Slutsky
DA
,
Manger
PR
,
Krubitzer
LA
.
Multiple somatosensory areas in the anterior parietal cortex of the California ground squirrel (Spermophilus beecheyii)
.
J Comp Neurol
.
2000
;
416
(
4
):
521
39
. .
55.
Krubitzer
LA
,
Manger
PR
,
Pettigrew
J
,
Calford
M
.
Organization of somatosensory cortex in monotremes: in search of the prototypical plan
.
J Comp Neurol
.
1995
;
351
(
2
):
261
306
. .
56.
Krubitzer
LA
,
Kaas
JH
.
The organization and connections of somatosensory cortex in marmosets
.
J Neurosci
.
1990
;
10
(
3
):
952
74
. .
57.
Elston
GN
,
Manger
PR
.
The organization and connections of somatosensory cortex in the brush-tailed possum (Trichosurus vulpecula): evidence for multiple, topographically organized and interconnected representations in an Australian marsupial
.
Somatosens Mot Res
.
1999
;
16
(
4
):
312
37
. .
58.
Remple
MS
,
Henry
EC
,
Catania
KC
.
Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth
.
J Comp Neurol
.
2003
;
467
(
1
):
105
18
. .
59.
Campos
GB
,
Welker
WI
.
Comparisons between brains of a large and a small hystricomorph rodent: capybara, Hydrochoerus and Guinea pig, Cavia; neocortical projection regions and measurements of brain subdivisions
.
Brain Behav Evol
.
1976
;
13
(
4
):
243
66
. .
60.
Divac
I
.
Monotremunculi and brain evolution
.
Trends Neurosci
.
1995
;
18
(
1
):
2
4
. .
61.
Kaas
JH
.
Neocortex in early mammals and its subsequent variations
.
Ann N Y Acad Sci
.
2011
;
1225
:
28
36
. .
62.
Grant
RA
,
Delaunay
MG
,
Haidarliu
S
.
Mystacial whisker layout and musculature in the Guinea pig (Cavia porcellus): a social, diurnal mammal
.
Anat Rec
.
2017
;
300
(
3
):
527
36
. .
63.
Haidarliu
S
,
Kleinfeld
D
,
Deschenes
M
,
Ahissar
E
.
The musculature that drives active touch by vibrissae and nose in mice
.
Anat Rec
.
2015
;
298
(
7
):
1347
58
. .
64.
Haidarliu
S
,
Nelinger
G
,
Gantar
L
,
Ahissar
E
,
Saraf-Sinik
I
.
Functional anatomy of mystacial active sensing in rats
.
Anat Rec
.
2023
:
1
15
. .
65.
Wilson
DE
,
Lacher
TE
Jr
,
Mittermeier
RA
.
Cuniculidae
. In:
Handbook of the mammals of the world. lagomorphs and rodents I
.
Barcelona
:
Lynx Edicions
;
2016
.
6
; p.
398
404
.
66.
Antoine
PO
,
Marivaux
L
,
Croft
DA
,
Billet
G
,
Ganerød
M
,
Jaramillo
C
, et al
.
Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography
.
Proc R Soc A B
.
2012
;
279
(
1732
):
1319
26
. .
67.
Voloch
CM
,
Vilela
JF
,
Loss-Oliveira
L
,
Schrago
CG
.
Phylogeny and chronology of the major lineages of new world hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America
.
BMC Res Notes
.
2013
;
6
:
160
. .
68.
Honeycutt
RL
.
Phylogenetics of caviomorph rodents and genetic perspectives on the evolution of sociality and mating systems in the Caviidae
. In:
Moreira
J
,
Ferraz
K
,
Herrera
E
,
Macdonald
D
, editors.
Capybara
.
New York
:
Springer
;
2013
. p.
61
81
.
69.
Herrera
EA
,
MacDonald
DW
.
Resource utilization and territoriality in group-living capybaras (Hydrochoerus hydrochaeris)
.
J Anim Ecol
.
1989
;
58
(
2
):
667
79
. .
70.
Mittelman
P
,
Dracxler
CM
,
Santos-Coutinho
PRO
,
Pires
AS
.
Sowing forests: a synthesis of seed dispersal and predation by agoutis and their influence on plant communities
.
Biol Rev Camb Philos Soc
.
2021
;
96
(
6
):
2425
45
. .
71.
Lall
KR
,
Jones
KR
,
Garcia
GW
.
Nutrition of six selected neo-tropical mammals in Trinidad and Tobago with the potential for domestication
.
Vet Sci
.
2018
;
5
(
2
):
52
. .
72.
Sorrenti
V
,
Cecchetto
C
,
Maschietto
M
,
Fortinguerra
S
,
Buriani
A
,
Vassanelli
S
.
Understanding the effects of anesthesia on cortical electrophysiological recordings: a scoping Review
.
Int J Mol Sci
.
2021
;
22
(
3
):
1286
. .
You do not currently have access to this content.