The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.

1.
Abellán
A
,
Desfilis
E
,
Medina
L
.
Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken
.
Front Neuroanat
.
2014
;
8
:
59
.
2.
Aerts
T
,
Seuntjens
E
.
Novel perspectives on the development of the amygdala in rodents
.
Front Neuroanat
.
2021
;
15
:
786679
.
3.
Bandler
RC
,
Vitali
I
,
Delgado
RN
,
Ho
MC
,
Dvoretskova
E
,
Ibarra Molinas
JS
,
.
Single-cell delineation of lineage and genetic identity in the mouse brain
.
Nature
.
2022
;
601
(
7893
):
404
9
.
4.
Briscoe
SD
,
Ragsdale
CW
.
Homology, neocortex, and the evolution of developmental mechanisms
.
Science
.
2018
;
362
(
6411
):
190
3
.
5.
Brox
A
,
Puelles
L
,
Ferreiro
B
,
Medina
L
.
Expression of the genes GAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods
.
J Comp Neurol
.
2003
;
461
(
3
):
370
93
.
6.
Brox
A
,
Puelles
L
,
Ferreiro
B
,
Medina
L
.
Expression of the genes Emx1, Tbr1, and Eomes (Tbr2) in the telencephalon of Xenopus laevis confirms the existence of a ventral pallial division in all tetrapods
.
J Comp Neurol
.
2004
;
474
(
4
):
562
77
.
7.
Bruce
LL
,
Neary
TJ
.
The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations
.
Brain Behav Evol
.
1995
;
46
(
4
5
):
224
34
.
8.
Bulfone
A
,
Smiga
SM
,
Shimamura
K
,
Peterson
A
,
Puelles
L
,
Rubenstein
JL
.
T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex
.
Neuron
.
1995
;
15
(
1
):
63
78
.
9.
Cádiz-Moretti
B
,
Abellán-Álvaro
M
,
Pardo-Bellver
C
,
Martínez-García
F
,
Lanuza
E
.
Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse
.
J Comp Neurol
.
2017
;
525
(
13
):
2929
54
.
10.
Caqueret
A
,
Boucher
F
,
Michaud
JL
.
Laminar organization of the early developing anterior hypothalamus
.
Dev Biol
.
2006
;
298
(
1
):
95
106
.
11.
Choi
HMT
,
Schwarzkopf
M
,
Fornace
ME
,
Acharya
A
,
Artavanis
G
,
Stegmaier
J
,
.
Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust
.
Development
.
2018
;
145
(
12
):
dev165753
.
12.
Colquitt
BM
,
Merullo
DP
,
Konopka
G
,
Roberts
TF
,
Brainard
MS
.
Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits
.
Science
.
2021
;
371
(
6530
):
eabd9704
.
13.
Desfilis
E
,
Abellán
A
,
Sentandreu
V
,
Medina
L
.
Expression of regulatory genes in the embryonic brain of a lizard and implications for understanding pallial organization and evolution
.
J Comp Neurol
.
2018
;
526
(
1
):
166
202
.
14.
Endepols
H
,
Roden
K
,
Walkowiak
W
.
Hodological characterization of the septum in anuran amphibians: II. Efferent connections
.
J Comp Neurol
.
2005
;
483
(
4
):
437
57
.
15.
Fernandez
AS
,
Pieau
C
,
Repérant
J
,
Boncinelli
E
,
Wassef
M
.
Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes
.
Development
.
1998
;
125
(
11
):
2099
111
.
16.
Fremeau
RT
,
Troyer
MD
,
Pahner
I
,
Nygaard
GO
,
Tran
CH
,
Reimer
RJ
,
.
The expression of vesicular glutamate transporters defines two classes of excitatory synapse
.
Neuron
.
2001
;
31
(
2
):
247
60
.
17.
Garcia-Calero
E
,
Puelles
L
.
Development of the mouse anterior amygdalar radial unit marked by Lhx9-expression
.
Brain Struct Funct
.
2021
;
226
(
2
):
575
600
.
18.
Garcia-Calero
E
,
Martínez-de-la-Torre
M
,
Puelles
L
.
A radial histogenetic model of the mouse pallial amygdala
.
Brain Struct Funct
.
2020
;
225
(
7
):
1921
56
.
19.
Garcia-Calero
E
,
López-González
L
,
Martínez-de-la-Torre
M
,
Fan
CM
,
Puelles
L
.
Sim1-expressing cells illuminate the origin and course of migration of the nucleus of the lateral olfactory tract in the mouse amygdala
.
Brain Struct Funct
.
2021
;
226
(
2
):
519
62
.
20.
García-Moreno
F
,
Pedraza
M
,
Di Giovannantonio
LG
,
Di Salvio
M
,
López-Mascaraque
L
,
Simeone
A
,
.
A neuronal migratory pathway crossing from diencephalon to telencephalon populates amygdala nuclei
.
Nat Neurosci
.
2010
;
13
(
6
):
680
9
.
21.
Gedman
G
,
Haase
B
,
Durieux
G
,
Biegler
MT
,
Fedrigo
O
,
Jarvis
ED
.
As above, so below: whole transcriptome profiling demonstrates strong molecular similarities between avian dorsal and ventral pallial subdivisions
.
J Comp Neurol
.
2021
;
529
(
12
):
3222
46
.
22.
González
A
,
López
JM
,
Morona
R
,
Moreno
N
.
The organization of the central nervous system of amphibians
.
Evolutionary neuroscience
Elsevier
;
2020
. p.
125
57
.
23.
Gorski
JA
,
Talley
T
,
Qiu
M
,
Puelles
L
,
Rubenstein
JLR
,
Jones
KR
.
Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage
.
J Neurosci
.
2002
;
22
(
15
):
6309
14
.
24.
Hall
IC
,
Ballagh
IH
,
Kelley
DB
.
The Xenopus amygdala mediates socially appropriate vocal communication signals
.
J Neurosci
.
2013
;
33
(
36
):
14534
48
.
25.
Herrick
CJ
.
The brain of the Tiger Salamander, Ambystoma tigrinum
.
Chicago
:
Univ. of Chicago Press
;
1948
.https://doi.org/10.5962/bhl.title.6375.
26.
Hirata-Fukae
C
,
Hirata
T
.
The zinc finger gene Fezf2 is required for the development of excitatory neurons in the basolateral complex of the amygdala
.
Dev Dyn
.
2014
;
243
(
8
):
1030
6
.
27.
Jiménez
S
,
Moreno
N
.
Analysis of the expression pattern of cajal-retzius cell markers in the Xenopus laevis forebrain
.
Brain Behav Evol
.
2021
:
1
20
.
28.
Joven
A
,
Morona
R
,
González
A
,
Moreno
N
.
Spatiotemporal patterns of Pax3, Pax6, and Pax7 expression in the developing brain of a urodele amphibian, Pleurodeles waltl
.
J Comp Neurol
.
2013
;
521
(
17
):
3913
53
.
29.
Joven
A
,
Kirkham
M
,
Simon
A
.
Husbandry of Spanish ribbed newts (Pleurodeles waltl)
.
Methods Mol Biol
.
2015
;
1290
:
47
70
.
30.
Kuehn
E
,
Clausen
DS
,
Null
RW
,
Metzger
BM
,
Willis
AD
,
Özpolat
BD
.
Segment number threshold determines juvenile onset of germline cluster expansion in Platynereis dumerilii
.
J Exp Zool B Mol Dev Evol
.
2022
;
338
(
4
):
225
40
.
31.
Kuerbitz
J
,
Arnett
M
,
Ehrman
S
,
Williams
MT
,
Vorhees
CV
,
Fisher
SE
,
.
Loss of Intercalated Cells (ITCs) in the mouse amygdala of Tshz1 mutants correlates with fear, depression, and social interaction phenotypes
.
J Neurosci
.
2018
;
38
(
5
):
1160
77
.
32.
Laberge
F
,
Roth
G
.
Connectivity and cytoarchitecture of the ventral telencephalon in the salamander Plethodon shermani
.
J Comp Neurol
.
2005
;
482
(
2
):
176
200
.
33.
Laberge
F
,
Mühlenbrock-Lenter
S
,
Grunwald
W
,
Roth
G
.
Evolution of the amygdala: new insights from studies in amphibians
.
Brain Behav Evol
.
2006
;
67
(
4
):
177
87
.
34.
Marín
O
,
González
A
,
Smeets
WJ
.
Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens
.
J Comp Neurol
.
1997a
;
378
(
1
):
16
49
.
35.
Marín
O
,
González
A
,
Smeets
WJAJ
.
Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens
.
J Comp Neurol
.
1997b
;
380
(
1
):
23
50
.
36.
Medina
L
,
Abellán
A
,
Desfilis
E
.
Evolving views on the pallium
.
Brain Behav Evol
.
2021
;
1
19
.
37.
Medina
L
,
Abellán
A
,
Vicario
A
,
Castro-Robles
B
,
Desfilis
E
.
The amygdala
.
Evolution of nervous systems
Elsevier
;
2017
. p.
427
78
.
38.
Metwalli
AH
,
Abellán
A
,
Freixes
J
,
Pross
A
,
Desfilis
E
,
Medina
L
.
Distinct subdivisions in the transition between telencephalon and hypothalamus produce otp and sim1 cells for the extended amygdala in sauropsids
.
Front Neuroanat
.
2022
;
16
:
883537
.
39.
Morales
L
,
Castro-Robles
B
,
Abellán
A
,
Desfilis
E
,
Medina
L
.
A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala
.
J Comp Neurol
.
2021
;
529
(
10
):
2418
49
.
40.
Moreno
N
,
González
A
.
Localization and connectivity of the lateral amygdala in anuran amphibians
.
J Comp Neurol
.
2004
;
479
(
2
):
130
48
.
41.
Moreno
N
,
González
A
.
The common organization of the amygdaloid complex in tetrapods: new concepts based on developmental, hodological and neurochemical data in anuran amphibians
.
Prog Neurobiol
.
2006
;
78
(
2
):
61
90
.
42.
Moreno
N
,
González
A
.
Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization
.
J Comp Neurol
.
2007a
;
503
(
6
):
815
31
.
43.
Moreno
N
,
González
A
.
Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio-amniotic transition
.
J Anat
.
2007b
;
211
(
2
):
151
63
.
44.
Moreno
N
,
González
A
.
Regionalization of the telencephalon in urodele amphibians and its bearing on the identification of the amygdaloid complex
.
Front Neuroanat
.
2007c
;
1
:
1
.
45.
Moreno
N
,
González
A
.
Pattern of neurogenesis and identification of neuronal progenitor subtypes during pallial development in Xenopus laevis
.
Front Neuroanat
.
2017
;
11
:
24
.
46.
Moreno
N
,
Bachy
I
,
Rétaux
S
,
González
A
.
LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions
.
J Comp Neurol
.
2004
;
472
(
1
):
52
72
.
47.
Morona
R
,
González
A
.
Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions
.
J Comp Neurol
.
2008
;
511
(
2
):
187
220
.
48.
Neary
TJ
.
The pallium of anuran amphibians
. In:
Jones
EG
,
Peters
A
, editors.
Comparative structure and evolution of cerebral cortex, part I
.
Boston, MA
:
Springer US
;
1990
. p.
107
38
.
49.
Norimoto
H
,
Fenk
LA
,
Li
HH
,
Tosches
MA
,
Gallego-Flores
T
,
Hain
D
,
.
A claustrum in reptiles and its role in slow-wave sleep
.
Nature
.
2020
;
578
(
7795
):
413
8
.
50.
Northcutt
RG
,
Kicliter
E
.
Organization of the amphibian telencephalon
. In:
Ebbesson
SOE
, editor.
Comparative neurology of the telencephalon
.
Boston, MA
:
Springer US
;
1980
. p.
203
55
.
51.
Novejarque
A
,
Lanuza
E
,
Martínez-García
F
.
Amygdalostriatal projections in reptiles: a tract-tracing study in the lizard Podarcis hispanica
.
J Comp Neurol
.
2004
;
479
(
3
):
287
308
.
52.
O’Leary
TP
,
Sullivan
KE
,
Wang
L
,
Clements
J
,
Lemire
AL
,
Cembrowski
MS
.
Extensive and spatially variable within-cell-type heterogeneity across the basolateral amygdala
.
Elife
.
2020
;
9
:
e59003
.
53.
Petrovich
GD
,
Risold
PY
,
Swanson
LW
.
Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat
.
J Comp Neurol
.
1996
;
374
(
3
):
387
420
.
54.
Porter
BA
,
Mueller
T
.
The Zebrafish amygdaloid complex - functional ground plan, molecular delineation, and everted topology
.
Front Neurosci
.
2020
;
14
:
608
.
55.
Puelles
L
.
Comments on the updated tetrapartite pallium model in the mouse and chick, featuring a homologous claustro-insular complex
.
Brain Behav Evol
.
2017
;
90
(
2
):
171
89
.
56.
Puelles
L
,
Kuwana
E
,
Puelles
E
,
Bulfone
A
,
Shimamura
K
,
Keleher
J
,
.
Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1
.
J Comp Neurol
.
2000
;
424
(
3
):
409
38
.
57.
Puelles
L
,
Alonso
A
,
García-Calero
E
,
Martínez-de-la-Torre
M
.
Concentric ring topology of mammalian cortical sectors and relevance for patterning studies
.
J Comp Neurol
.
2019
;
527
(
10
):
1731
52
.
58.
Remedios
R
,
Huilgol
D
,
Saha
B
,
Hari
P
,
Bhatnagar
L
,
Kowalczyk
T
,
.
A stream of cells migrating from the caudal telencephalon reveals a link between the amygdala and neocortex
.
Nat Neurosci
.
2007
;
10
(
9
):
1141
50
.
59.
Romanov
RA
,
Tretiakov
EO
,
Kastriti
ME
,
Zupancic
M
,
Häring
M
,
Korchynska
S
,
.
Molecular design of hypothalamus development
.
Nature
.
2020
;
582
(
7811
):
246
52
.
60.
Roth
G
,
Nishikawa
KC
,
Naujoks-Manteuffel
C
,
Schmidt
A
,
Wake
DB
.
Paedomorphosis and simplification in the nervous system of salamanders
.
Brain Behav Evol
.
1993
;
42
(
3
):
137
70
.
61.
Schindelin
J
,
Arganda-Carreras
I
,
Frise
E
,
Kaynig
V
,
Longair
M
,
Pietzsch
T
,
.
Fiji: an open-source platform for biological-image analysis
.
Nat Methods
.
2012
;
9
(
7
):
676
82
.
62.
Swanson
LW
,
Petrovich
GD
.
What is the amygdala
.
Trends Neurosci
.
1998
;
21
(
8
):
323
31
.
63.
Tang
K
,
Rubenstein
JLR
,
Tsai
SY
,
Tsai
MJ
.
COUP-TFII controls amygdala patterning by regulating neuropilin expression
.
Development
.
2012
;
139
(
9
):
1630
9
.
64.
Tosches
MA
.
From cell types to an integrated understanding of brain evolution: the case of the cerebral cortex
.
Annu Rev Cell Dev Biol
.
2021
;
37
:
495
517
.
65.
Tosches
MA
,
Yamawaki
TM
,
Naumann
RK
,
Jacobi
AA
,
Tushev
G
,
Laurent
G
.
Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles
.
Science
.
2018
;
360
(
6391
):
881
8
.
66.
Vigneault
É
,
Poirel
O
,
Riad
M
,
Prud’homme
J
,
Dumas
S
,
Turecki
G
,
.
Distribution of vesicular glutamate transporters in the human brain
.
Front Neuroanat
.
2015
;
9
:
23
.
67.
Voneida
TJ
,
Sligar
CM
.
Efferent projections of the dorsal ventricular ridge and the striatum in the tegu lizard. Tupinambis nigropunctatus
.
J Comp Neurol
.
1979
;
186
(
1
):
43
64
.
68.
Waclaw
RR
,
Ehrman
LA
,
Pierani
A
,
Campbell
K
.
Developmental origin of the neuronal subtypes that comprise the amygdalar fear circuit in the mouse
.
J Neurosci
.
2010
;
30
(
20
):
6944
53
.
69.
Wallén-Mackenzie
A
,
Wootz
H
,
Englund
H
.
Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission
.
Ups J Med Sci
.
2010
;
115
(
1
):
11
20
.
70.
Woych
J
,
Ortega Gurrola
A
,
Deryckere
A
,
Jaeger
ECB
,
Gumnit
E
,
Merello
G
,
.
Cell-type profiling in salamanders identifies innovations in vertebrate forebrain evolution
.
Science
.
2022
;
377
(
6610
):
eabp9186
.
71.
Wu
YE
,
Pan
L
,
Zuo
Y
,
Li
X
,
Hong
W
.
Detecting activated cell populations using single-cell RNA-seq
.
Neuron
.
2017
;
96
(
2
):
313
29
. e6. https://doi.org/10.1016/j.neuron.2017.09.026.
72.
Xiao
C
,
Liu
N
,
Province
H
,
Piñol
RA
,
Gavrilova
O
,
Reitman
ML
.
BRS3 in both MC4R- and SIM1-expressing neurons regulates energy homeostasis in mice
.
Mol Metab
.
2020
;
36
:
100969
.
73.
Zeisel
A
,
Hochgerner
H
,
Lönnerberg
P
,
Johnsson
A
,
Memic
F
,
van der Zwan
J
,
.
Molecular architecture of the mouse nervous system
.
Cell
.
2018
;
174
(
4
):
999
1014
. e22. https://doi.org/10.1016/j.cell.2018.06.021.
You do not currently have access to this content.