Crocodilians (alligators, crocodiles, and gharials) are the closet living relatives to birds and, as such, represent a key clade to understand the evolution of the avian brain. However, many aspects of crocodilian neurobiology remain unknown. In this paper, we address an important knowledge gap as there are no published studies of cerebellar connections in any crocodilian species. We used injections of retrograde tracers into the cerebellum of the American alligator (Alligator mississippiensis) to describe for the first time the origin of climbing and mossy fiber inputs. We found that inputs to the cerebellum in the American alligator are similar to those of other nonavian reptiles and birds. Retrograde labeled cells were found in the spinal cord, inferior olive, reticular formation, vestibular and cerebellar nuclei, as well as in nucleus ruber and surrounding tegmentum. Additionally, we found no retrogradely labeled cells in the anterior rhombencephalon which suggest that, like other nonavian reptiles, crocodilians may lack pontine nuclei. Similar to birds and other nonavian reptiles, we found inputs to the cerebellum from the pretectal nucleus lentiformis mesencephali. Additionally, we found retrogradely labeled neurons in two nuclei in the pretectum: the nucleus circularis and the interstitial nucleus of the posterior commissure. These pretectal projections have not been described in any other nonavian reptile to date, but they do resemble projections from the nucleus spiriformis medialis of birds. Our results show that many inputs to the cerebellum are highly conserved among sauropsids and that extensive pretectal inputs to the cerebellum are not exclusive to the avian brain. Finally, we suggest that the pontine nuclei of birds are an evolutionary novelty that may have evolved after the last common ancestor between birds and crocodilians, and may represent an intriguing case of convergent evolution with mammals.

1.
Apps
R
,
Hawkes
R
,
Aoki
S
,
Bengtsson
F
,
Brown
AM
,
Chen
G
,
.
Cerebellar modules and their role as operational cerebellar processing units: a consensus paper [corrected]
.
Cerebellum
.
2018
;
17
(
5
):
654
82
.
2.
Arends
JJ
,
Voogd
J
.
Topographic aspects of the olivocerebellar system in the pigeon
. In:
Stata
P
, editor.
Experimental Brain Research Series 17: The olivocerebellar system in motor control
.
1989
. p.
52
7
[cited 2017 May 10].
3.
Arends
JJ
,
Zeigler
HP
.
Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections
.
J Comp Neurol
.
1991
;
306
(
2
):
221
44
.
4.
Armstrong
DM
.
Functional significance of connections of the inferior olive
.
Physiol Rev
.
1974
;
54
(
2
):
358
417
.
5.
Armstrong
RC
,
Clarke
PGH
.
Neuronal death and the development of the pontine nuclei and inferior olive in the chick
.
Neuroscience
.
1979
;
4
(
11
):
1635
47
.
6.
Aspden
JW
,
Armstrong
CLCL
,
Gutierrez-Ibanez
CI
,
Hawkes
R
,
Iwaniuk
AN
,
Kohl
T
,
.
Zebrin II/aldolase C expression in the cerebellum of the western diamondback rattlesnake (Crotalus atrox)
.
PLoS One
.
2015
;
10
(
2
):
e0117539
11
.
7.
Bangma
GC
.
Cerebellar connections in some reptiles
.
1983
. PhD Thesis.
Nijmegen
.
8.
Bangma
GC
,
ten Donkelaar
H
.
Afferent connections of the cerebellum in various types of reptiles
.
J Comp Neurol
.
1982
;
207
(
3
):
255
73
.
9.
Barmack
NH
,
Shojaku
H
.
Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation
.
J Neurophysiol
.
1995
;
74
(
6
):
2573
89
.
10.
Biswas
MS
,
Luo
Y
,
Sarpong
GA
,
Sugihara
I
.
Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse
.
J Comp Neurol
.
2019
;
527
(
12
):
1966
85
.
11.
Brecha
N
,
Karten
HJ
,
Hunt
SP
.
Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study
.
J Comp Neurol
.
1980
;
189
(
4
):
615
70
.
12.
Briscoe
SD
.
Further contributions to the study of neocortical origins: input cells, IT cells, and the alligator dorsal telencephalon
.
The University of Chicago
;
2017
.
13.
Briscoe
SD
,
Ragsdale
CW
.
Molecular anatomy of the alligator dorsal telencephalon
.
J Comp Neurol
.
2018
;
526
(
10
):
1613
46
.
14.
Brodal
A
,
Brodal
P
.
Observations on the secondary vestibulocerebellar projections in the macaque monkey
.
Exp Brain Res
.
1985
;
58
(
1
):
62
74
.
15.
Brodal
A
,
Kawamura
K
.
The inferior olive. Notes on its comparative anatomy, morphology, and cytology
. In:
Brodal
A
,
Kawamura
K
, editors.
Olivocerebellar projection: a review
.
Berlin, Heidelberg
:
Springer
;
1980
. p.
1
9
.
16.
Brodal
A
,
Kristiansen
K
,
Jansen
J
.
Experimental demonstration of a pontine homologue in birds
.
J Comp Neurol
.
1950
;
92
(
1
):
23
69
.
17.
Cambronero
F
,
Puelles
L
.
Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras
.
J Comp Neurol
.
2000
;
427
(
4
):
522
45
.
18.
Clarke
PGH
.
Some visual and other connections to the cerebellum of the pigeon
.
J Comp Neurol
.
1977
;
174
(
3
):
535
52
.
19.
Craciun
I
,
Gutiérrez-Ibáñez
C
,
Corfield
JR
,
Hurd
PLPL
,
Wylie
DR
.
Topographic organization of inferior olive projections to the zebrin II stripes in the pigeon cerebellar uvula
.
Front Neuroanat
.
2018
;
12
:
18
.
20.
Craciun
I
,
Gutierrez-Ibanez
C
,
Chan
ASM
,
Luksch
H
,
Wylie
DR
.
Secretagogin immunoreactivity reveals lugaro cells in the pigeon cerebellum
.
Cerebellum
.
2019
;
18
(
3
):
544
55
.
21.
Cruce
Ja. F
.
A cytoarchitectonic study of the diencephalon of the tegu lizard, Tupinambis nigropunctatus
.
J Comp Neurol
.
1974
;
153
(
3
):
215
38
.
22.
Dávila
JC
,
Padial
J
,
Andreu
MJ
,
Real
,
Guirado
S
.
Calretinin immunoreactivity in the cerebral cortex of the lizard Psammodromus algirus: a light and electron microscopic study
.
J Comp Neurol
.
1997
;
382
(
3
):
382
93
.
23.
Dávila
JC
,
Guirado
S
,
Puelles
L
.
Expression of calcium–binding proteins in the diencephalon of the lizard Psammodromus algirus
.
J Comp Neurol
.
2000
;
427
(
1
):
67
92
.
24.
De Zeeuw
CI
,
Simpson
JI
,
Hoogenraad
CC
,
Koekkoek
SK
,
Galjart
N
,
Ruigrok
TJ
.
Microcircuitry and function of the inferior olive
.
Trends Neurosci
.
1998
;
21
(
9
):
391
400
.
25.
Derobert
Y
,
Médina
M
,
Rio
J-P
,
Ward
R
,
Repérant
J
,
Marchand
M-J
,
.
Retinal projections in two crocodilian species, Caiman crocodilus and Crocodylus niloticus
.
Anat Embryol
.
1999
;
200
:
175
91
.
26.
Dietrichs
E
,
Walberg
F
.
Cerebellar cortical afferents from the red nucleus in the cat
.
Exp Brain Res
.
1983
;
50
(
2-3
):
353
8
.
27.
Dubbeldam
JL
,
Den Boer-Visser
AM
,
Bout
RG
.
Organization and efferent connections of the archistriatum of the mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study
.
J Comp Neurol
.
1997
;
388
(
4
):
632
57
.
28.
Elprana
D
,
Wouterlood
FG
,
Alones
VE
.
A corticotectal projection in the lizard Agama agama
.
Neurosci Lett
.
1980
;
18
(
3
):
251
6
.
29.
Fernández
M
,
Morales
C
,
Durán
E
,
Fernández-Colleman
S
,
Sentis
E
,
Mpodozis
J
,
.
Parallel organization of the avian sensorimotor arcopallium: tectofugal visual pathway in the pigeon (Columba livia)
.
J Comp Neurol
.
2020
;
528
(
4
):
597
623
.
30.
Ferran
JL
,
de Oliveira
ED
,
Merchán
P
,
Sandoval
JE
,
Sánchez-Arrones
L
,
Martínez-de-la-Torre
M
,
.
Genoarchitectonic profile of developing nuclear groups in the chicken pretectum
.
J Comp Neurol
.
2009
;
517
(
4
):
405
51
.
31.
Gaede
AH
,
Gutierrez-Ibanez
C
,
Armstrong
MS
,
Altshuler
DL
,
Wylie
DR
.
Pretectal projections to the oculomotor cerebellum in hummingbirds (Calypte anna), zebra finches (Taeniopygia guttata), and pigeons (Columba livia)
.
J Comp Neurol
.
2019
;
527
(
16
):
2644
58
.
32.
Gamlin
PDR
,
Cohen
DH
.
Projections of the retinorecipient pretectal nuclei in the pigeon (Columba livia)
.
J Comp Neurol
.
1988
;
269
(
1
):
18
46
.
33.
Green
RE
,
Braun
EL
,
Armstrong
J
,
Earl
D
,
Nguyen
N
,
Hickey
G
,
.
Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs
.
Science
.
2014
;
346
(
6215
):
1254449
.
34.
Grover
BG
,
Grüsser-Cornehls
U
.
Cerebellar afferents in the frogs, Rana esculenta and Rana temporaria
.
Cell Tissue Res
.
1984
;
237
:
259
67
.
35.
Gutiérrez-Ibáñez
C
,
Dannish
MR
,
Kohl
T
,
Kettler
L
,
Carr
CE
,
Tisdale
RK
,
.
Zebrin expression in the cerebellum of two crocodilian species
.
Brain Behav Evol
.
2020
;
95
(
1
):
45
55
.
36.
Gutiérrez-Ibáñez
C
,
Pilon
MC
,
Wylie
DR
.
Pretecto- and ponto-cerebellar pathways to the pigeon oculomotor cerebellum follow a zonal organization
.
J Comp Neurol
.
2022
;
530
(
5
):
817
33
.
37.
Herculano-Houzel
S
.
Coordinated scaling of cortical and cerebellar numbers of neurons
.
Front Neuroanat
.
2010
;
4
:
12
8
.
38.
Hoogland
PV
.
Efferent connections of the striatum in Tupinambis nigropunctatus
.
J Morphol
.
1977
;
152
(
2
):
229
46
.
39.
Iwaniuk
ANAN
,
Pakan
JMPJMP
,
Gutiérrez-Ibáñez
C
,
Wylie
DR
.
Expression of calcium-binding proteins in cerebellar- and inferior olivary-projecting neurons in the nucleus lentiformis mesencephali of pigeons
.
Vis Neurosci
.
2009
;
26
(
3
):
341
7
.
40.
Janke
A
,
Arnason
U
.
The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles)
.
Mol Biol Evol
.
1997
;
14
(
12
):
1266
72
.
41.
Arends
JJ
,
Woelders-Blok
A
,
Dubbeldam
JL
.
The efferent connections of the nuclei of the descending trigeminal tract in the mallard (Anas platyrhynchos L
.
Neuroscience
.
1984
;
13
(
3
):
797
817
.
42.
Henschke
JU
,
Pakan
JMP
.
Disynaptic cerebrocerebellar pathways originating from multiple functionally distinct cortical areas eLife
.
2020
;
9
:
1
27
.
43.
Karten
HJ
,
Finger
TE
.
A direct thalamo-cerebellar pathway in pigeon and catfish
.
Brain Res
.
1976
;
102
(
2
):
335
8
.
44.
Karten
HJ
,
Hodos
W
.
A Stereotaxic Atlas of the Brain of the Pigeon (Columbia livia)
.
Baltimore Md
:
Johns Hopkins Press
;
1967
.
45.
Kettler
L
,
Carr
CE
.
Neural maps of interaural time difference in the American Alligator: a stable feature in modern archosaurs
.
J Neurosci
.
2019
;
39
(
20
):
3882
96
.
46.
Kratochwil
CF
,
Maheshwari
U
,
Rijli
FM
.
The long journey of pontine nuclei neurons: from rhombic lip to cortico-ponto-cerebellar circuitry
.
Front Neural Circuits
.
2017
;
11
:
33
.
47.
Kverková
K
,
Marhounová
L
,
Polonyiová
A
,
Kocourek
M
,
Zhang
Y
,
Olkowicz
S
,
.
The evolution of brain neuron numbers in amniotes
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
11
):
e2121624119
.
48.
Larsell
O
.
The comparative anatomy and histology of the cerebellum: from myxinoids through birds
.
Minneapolis
:
University of Minnesota Press
;
1967
.
49.
Lau
KLKL
,
Glover
RG
,
Linkenhoker
B
,
Wylie
DR
.
Topographical organization of inferior olive cells projecting to translation and rotation zones in the vestibulocerebellum of pigeons
.
Neuroscience
.
1998
;
85
(
2
):
605
14
.
50.
Llinas
RR
,
Hillman
DE
.
Physiological and morphological organization of the cerebellar circuits in various vertebrates
.
Neurobiology of cerebellar evolution and development
.
Chicago
:
American Medical Association
;
1969
. p.
20
43
.
51.
Llinás
RR
,
Nicholson
C
.
Electrophysiological analysis of alligator cerebellar cortex: a study on dendritic spikes
. In:
Neurobiology of cerebellar evolution and development
.
Chicago
:
American Medical Association
;
1969
. p.
431
66
.
52.
Marín
F
,
Puelles
L
.
Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei
.
Eur J Neurosci
.
1995
;
7
(
8
):
1714
38
.
53.
Marín
G
,
Henny
P
,
Letelier
JC
,
Sentis
E
,
Karten
H
,
Mrosko
B
,
.
A simple method to microinject solid neural tracers into deep structures of the brain
.
J Neurosci Methods
.
2001
;
106
(
2
):
121
9
.
54.
Martnez-Marcos
A
,
Lanuza
E
,
Font
C
,
Martnez-Garca
F
.
Afferents to the red nucleus in the lizard Podarcis hispanica: putative pathways for visuomotor integration
.
J Comp Neurol
.
1999
;
411
(
1
):
35
55
.
55.
Miceli
D
,
Repérant
J
,
Villalobos
J
,
Dionne
L
.
Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columbia livia
.
J Hirnforsch
.
1987
;
28
(
1
):
45
57
.
56.
Nag
TC
,
Wadhwa
S
.
Ontogeny of two calcium-binding proteins (calbindin D-28K and parvalbumin) in the human inferior olivary complex and their distribution in the adults
.
J Chem Neuroanat
.
2004
;
27
(
3
):
183
92
.
57.
Necker
R
.
Spinocerebellar projections in the pigeon with special reference to the neck region of the body
.
J Comp Neurol
.
2001
;
429
(
3
):
403
18
.
58.
Newman
DB
,
Ginsberg
CY
.
Brainstem reticular nuclei that project to the cerebellum in rats A retrograde tracer study; pp. 54–62
.
Brain Behav Evol
.
1992
;
39
(
1
):
5454
6262
.
59.
Nicholson
C
,
Llinas
R
.
Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes
.
J Neurophysiol
.
1971
;
34
(
4
):
509
31
.
60.
Northcutt
RG
,
Butler
AB
.
Retinal projections in the northern water snake Natrix sipedon sipedon (L.)
.
J Morphol
.
1974
;
142
(
2
):
117
35
.
61.
Olkowicz
S
,
Kocourek
M
,
Lučan
RK
,
Porteš
M
,
Fitch
WT
,
Herculano-Houzel
S
.
Birds have primate-like numbers of neurons in the forebrain
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
26
):
7255
60
.
62.
Pakan
JMP
,
Wylie
DRW
.
Two optic flow pathways from the pretectal nucleus lentiformis mesencephali to the cerebellum in pigeons (Columba livia)
.
J Comp Neurol
.
2006
;
499
(
5
):
732
44
.
63.
Pakan
JMP
,
Graham
DJDJ
,
Iwaniuk
AN
,
Wylie
DRW
.
Differential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia)
.
J Comp Neurol
.
2008
;
508
(
3
):
402
17
.
64.
Pritz
MB
.
Anatomical identification of a telencephalic visual area in crocodiles: ascending connections of nucleus rotundus in Caiman crocodilus
.
J Comp Neurol
.
1975
;
164
(
3
):
323
38
.
65.
Pritz
MB
.
Early diencephalon development in Alligator
.
Brain Behav Evol
.
2008
;
71
(
1
):
15
31
.
66.
Pritz
MB
.
Crocodilian forebrain: evolution and development
.
Integr Comp Biol
.
2015
;
55
(
6
):
949
61
.
67.
Pritz
MB
.
Thalamic reticular nucleus in Alligator mississippiensis: soma and dendritic morphology
.
J Comp Neurol
.
2021
;
529
(
17
):
3785
844
.
68.
Pritz
MB
,
Stritzel
ME
.
Reptilian somatosensory midbrain: identification based on input from the spinal cord and dorsal column nucleus
.
Brain Behav Evol
.
1989
;
33
:
1
14
.
69.
Puelles
L
,
Martinez-de-la-Torre
M
,
Martinez
S
,
Watson
C
,
Paxinos
G
.
The chick brain in stereotaxic coordinates and alternate stains: featuring neuromeric divisions and mammalian homologies
.
Academic Press
;
2018
.
70.
Ramnani
N
.
The primate cortico-cerebellar system: anatomy and function
.
Nat Rev Neurosci
.
2006
;
7
:
511
22
.
71.
Reiner
A
,
Karten
HJ
.
A bisynaptic retinocerebellar pathway in the turtle
.
Brain Res
.
1978
;
150
(
1
):
163
9
.
72.
Reiner
A
,
Karten
HJ
.
Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia)
.
J Comp Neurol
.
1982
;
204
(
2
):
165
87
.
73.
Reiner
A
,
Brauth
SE
,
Kitt
CA
,
Karten
HJ
.
Basal ganglionic pathways to the tectum: studies in reptiles
.
J Comp Neurol
.
1980
;
193
(
2
):
565
89
.
74.
Ruigrok
TJH
.
Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum
.
J Comp Neurol
.
2003
;
466
(
2
):
278
98
.
75.
Sarrafizadeh
R
,
Houk
JC
.
Anatomical organization of the limb premotor network in the turtle (Chrysemys picta) revealed by in vitro transport of biocytin and neurobiotin
.
J Comp Neurol
.
1994
;
344
(
1
):
137
59
.
76.
Schwarz
IE
,
Schwarz
DWF
.
Afferents to the cerebellar cortex of turtles studied by means of the horseradish peroxidase technique
.
Anat Embryol
.
1980
;
160
(
1
):
39
52
.
77.
Schwarz
IE
,
Schwarz
DWF
.
The primary vestibular projection to the cerebellar cortex in the pigeon (Columba livia)
.
J Comp Neurol
.
1983
;
216
(
4
):
438
44
.
78.
Shaffer
HB
,
McCartney-Melstad
E
,
Near
TJ
,
Mount
GG
,
Spinks
PQ
.
Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines)
.
Mol Phylogenet Evol
.
2017
;
115
:
7
15
.
79.
Simões
TR
,
Caldwell
MW
,
Tałanda
M
,
Bernardi
M
,
Palci
A
,
Vernygora
O
,
.
The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps
.
Nature
.
2018
;
557
(
7707
):
706
9
.
80.
Simpson
JI
.
The accessory optic system
.
Annu Rev Neurosci
.
1984
;
7
:
13
41
.
81.
ten Donkelaar
HJ
,
Bangma
GC
,
de Boer-van Huizen
R
.
Reticulospinal and vestibulospinal pathways in the snake Python regius
.
Anat Embryol
.
1983
;
168
(
2
):
277
89
.
82.
Ulinski
PS
.
Dorsal ventricular ridge: a treatise on forebrain organization in reptiles and birds
.
Wiley-Interscience
;
1983
.
83.
Ulinski
PS
,
Margoliash
D
.
Neurobiology of the reptile: bird transition
. In:
Jones
EG
,
Peters
A
, editors.
Comparative structure and evolution of cerebral cortex, part I
.
Boston, MA
:
Springer US
;
1990
. p.
217
65
.
84.
Ulinski
PS
,
Nautiyal
J
.
Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys
.
J Comp Neurol
.
1988
;
276
(
1
):
92
112
.
85.
Voogd
J
,
Bigaré
F
.
Topographical distribution of olivary and cortico nuclear fibres in the cerebellum: a review
. In:
Courville
J
,
de Montigny
C
,
Lamarre
Y
, editors.
The inferior olivary nucleus
.
New York
:
Raven Press
;
1980
. p.
207
34
.
86.
Voogd
J
,
Ruigrok
TJH
.
The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern
.
J Neurocytol
.
2004
;
33
(
1
):
5
21
.
87.
Watson
C
,
Paxinos
G
.
Chemoarchitectonic atlas of the mouse brain
.
Academic
;
2010
. [cited 2022 Mar 25].Available from: https://scholar.google.com/scholar_lookup?title=Chemoarchitectonic+atlas+of+the+mouse+brain&author=Watson%2C+Charles&publication_year=2010.
88.
Weber
AE
,
Martin
J
,
Ariel
M
.
Connectivity of the turtle accessory optic system
.
Brain Res
.
2003
;
989
(
1
):
76
90
.
89.
Wild
JM
.
Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon
.
J Comp Neurol
.
1989
;
287
:
1
18
.
90.
Wild
JM
.
Direct and indirect “cortico” rubral and rubro cerebellar cortical projections in the pigeon
.
J Comp Neurol
.
1992
;
326
(
4
):
623
36
.
91.
Wild
JM
,
Fakabaugh
SM
.
Organization of afferent and efferent projections of the nucleus basalis prosencephali in a passerine, Taeniopygia guttata
.
J Comp Neurol
.
1996 Feb 5
;
365
(
2
):
306
28
.
92.
Wild
JM
,
Williams
MN
.
Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract
.
J Comp Neurol
.
2000
;
416
(
4
):
429
50
.
93.
Winfield
JA
,
Hendrickson
A
,
Kimm
J
.
Anatomical evidence that the medial terminal nucleus of the accessory optic tract in mammals provides a visual mossy fiber input to the flocculus
.
Brain Res
.
1978
;
151
(
1
):
175
82
.
94.
Witmer
LM
,
Ridgely
RC
,
Dufeau
DL
,
Semones
MC
.
Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs
. In:
Endo
H
,
Frey
R
, editors.
Anatomical imaging: towards a new morphology
.
Tokyo
:
Springer Japan
;
2008
. p.
67
87
.
95.
Wullimann
MF
,
Meyer
DL
.
Possible multiple evolution of indirect telencephalo-cerebellar pathways in teleosts: studies in Carassius auratus and Pantodon buchholzi
.
Cell Tissue Res
.
1993
;
274
(
3
):
447
55
.
96.
Wylie
DR
,
Linkenhoker
B
.
Mossy fibres from the nucleus of the basal optic root project to the vestibular and cerebellar nuclei in pigeons
.
Neurosci Lett
.
1996
;
219
(
2
):
83
6
.
97.
Wylie
DR
,
Linkenhoker
B
,
Lau
KL
.
Projections of the nucleus of the basal optic root in pigeons (Columba livia) revealed with biotinylated dextran amine
.
J Comp Neurol
.
1997
;
384
(
4
):
517
36
.
98.
Wylie
DR
,
Gutierrez-Ibanez
C
,
Graham
DJ
,
Kreuzer
MB
,
Pakan
JMP
,
Iwaniuk
AN
.
Heterogeneity of parvalbumin expression in the avian cerebellar cortex and comparisons with zebrin II Neuroscience
.
2011
;
185
:
73
84
.
99.
Wylie
DRDR
,
Jensen
M
,
Gutierrez-Ibanez
C
,
Graham
DJDJ
,
Iwaniuk
ANAN
.
Heterogeneity of calretinin expression in the avian cerebellar cortex of pigeons and relationship with zebrin II
.
J Chem Neuroanat
.
2013
;
52
:
95
103
.
100.
Wylie
DRDR
,
Hoops
D
,
Aspden
JWJW
,
Iwaniuk
ANAN
.
Zebrin II is expressed in sagittal stripes in the cerebellum of dragon lizards (Ctenophorus sp.)
.
Brain Behav Evol
.
2016
;
88
(
3-4
):
177
86
.
101.
Wylie
DR
,
Gutiérrez-Ibáñez
C
,
Gaede
AH
,
Altshuler
DL
,
Iwaniuk
AN
.
Visual-cerebellar pathways and their roles in the control of avian flight
.
Front Neurosci
.
2018
;
12
:
223
.
102.
Yu
Y
,
Fu
Y
,
Watson
C
.
The inferior olive of the C57bl/6J mouse: a chemoarchitectonic study
.
Anat Rec
.
2014
;
297
(
2
):
289
300
.
103.
Zeier
H
,
Karten
HJ
.
The archistriatum of the pigeon: organization of afferent and efferent connections
.
Brain Res
.
1971
;
31
(
2
):
313
26
.
You do not currently have access to this content.