The amygdala, a complex array of nuclei in the forebrain, controls emotions and emotion-related behaviors in vertebrates. Current research aims to understand the amygdala’s evolution in ray-finned fish such as zebrafish because of the region’s relevance for social behavior and human psychiatric disorders. Clear-cut molecular definitions of the amygdala and its evolutionary-developmental relationship to the one of mammals are critical for zebrafish models of affective disorders and autism. In this review, I argue that the prosomeric model and a focus on the olfactory system’s organization provide ideal tools for discovering deep ancestral relationships between the emotional systems of zebrafish and mammals. The review’s focus is on the “extended amygdala,” which refers to subpallial amygdaloid territories including the central (autonomic) and the medial (olfactory) amygdala required for reproductive and social behaviors. Amphibians, sauropsids, and lungfish share many characteristics with the basic amygdala ground plan of mammals, as molecular and hodological studies have shown. Further exploration of the evolution of the amygdala in basally derived fish vertebrates requires researchers to test these “tetrapod-based” concepts. Historically, this has been a daunting task because the forebrains of basally derived fish vertebrates look very different from those of more familiar tetrapod ones. An extreme case are ray-finned fish (Actinopterygii) like zebrafish because their telencephalon develops through a distinct outward-growing process called eversion. To this day, scientists have struggled to determine how the everted telencephalon compares to non-actinopterygian vertebrates. Using the teleost zebrafish as a genetic model, comparative neurologists began to establish quantifiable molecular definitions that allow direct comparisons between ray-finned fish and tetrapods. In this review, I discuss how the most recent discovery of the zebrafish amygdala ground plan offers an opportunity to identify the developmental constraints of amygdala evolution and function. In addition, I explain how the zebrafish prethalamic eminence (PThE) topologically relates to the medial amygdala proper and the nucleus of the lateral olfactory tract (nLOT). In fact, I consider these previously misinterpreted olfactory structures the most critical missing evolutionary links between actinopterygian and tetrapod amygdalae. In this context, I will also explain why recognizing both the PThE and the nLOT is crucial to understanding the telencephalon eversion. Recognizing these anatomical hallmarks allows direct comparisons of the amygdalae of zebrafish and mammals. Ultimately, the new concepts of the zebrafish amygdala will overcome current dogmas and reach a holistic understanding of amygdala circuits of cognition and emotion in actinopterygians.

1.
Alonso
A
,
Trujillo
CM
,
Puelles
L
.
Longitudinal developmental analysis of prethalamic eminence derivatives in the chick by mapping of Tbr1 in situ expression
.
Brain Struct Funct
.
2020
;
225
:
481
510
. .
2.
Baeuml
SW
,
Biechl
D
,
Wullimann
MF
.
Adult islet1 expression outlines ventralized derivatives along zebrafish neuraxis
.
Front Neuroanat
.
2019
;
13
:
19
. .
3.
Ben-Shaul
Y
,
Katz
LC
,
Mooney
R
,
Dulac
C
.
In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb
.
Proc Natl Acad Sci U S A
.
2010
;
107
:
5172
7
. .
4.
Bergan
JF
,
Ben-Shaul
Y
,
Dulac
C
.
Sex-specific processing of social cues in the medial amygdala
.
Elife
.
2014
;
3
:
e02743
. .
5.
Biechl
D
,
Tietje
K
,
Ryu
S
,
Grothe
B
,
Gerlach
G
,
Wullimann
MF
.
Identification of accessory olfactory system and medial amygdala in the zebrafish
.
Sci Rep
.
2017
;
7
:
44295
. .
6.
Braford
MR
 Jr
.
Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not?
Brain Behav Evol
.
1995
;
46
:
259
74
. .
7.
Broglio
C
,
Rodríguez
F
,
Gómez
A
,
Arias
JL
,
Salas
C
.
Selective involvement of the goldfish lateral pallium in spatial memory
.
Behav Brain Res
.
2010
;
210
:
191
201
. .
8.
Butler
AB
.
Topography and topology of the teleost telencephalon: a paradox resolved
.
Neurosci Lett
.
2000
;
293
:
95
8
. .
9.
Davidson
S
,
Miller
KA
,
Dowell
A
,
Gildea
A
,
Mackenzie
A
.
A remote and highly conserved enhancer supports amygdala specific expression of the gene encoding the anxiogenic neuropeptide substance-P
.
Mol Psychiatry
.
2006
;
11
(
323
):
323
1
. .
10.
DeBerry
JJ
,
Robbins
MT
,
Ness
TJ
.
The amygdala central nucleus is required for acute stress-induced bladder hyperalgesia in a rat visceral pain model
.
Brain Res
.
2015
;
1606
:
77
85
. .
11.
Dulka
JG
.
Sex pheromone systems in goldfish: comparisons to vomeronasal systems in tetrapods
.
Brain Behav Evol
.
1993
;
42
:
265
80
. .
12.
Durán
E
,
Ocaña
FM
,
Broglio
C
,
Rodríguez
F
,
Salas
C
.
Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a “hole-board” task
.
Behav Brain Res
.
2010
;
214
:
480
7
. .
13.
Duvarci
S
,
Popa
D
,
Paré
D
.
Central amygdala activity during fear conditioning
.
J Neurosci
.
2011
;
31
:
289
94
. .
14.
Fernald
RD
.
Cognitive skills and the evolution of social systems
.
J Exp Biol
.
2017
;
220
:
103
13
. .
15.
Field
KE
,
McVicker
CT
,
Maruska
KP
.
Sexually-relevant visual and chemosensory signals induce distinct behaviors and neural activation patterns in the Social African Cichlid, Astatotilapia burtoni
.
Front Behav Neurosci
.
2018
;
12
:
267
. .
16.
Folgueira
M
,
Bayley
P
,
Navratilova
P
,
Becker
TS
,
Wilson
SW
,
Clarke
JD
.
Morphogenesis underlying the development of the everted teleost telencephalon
.
Neural Dev
.
2012
;
7
:
32
. .
17.
Furlan
G
,
Cuccioli
V
,
Vuillemin
N
,
Dirian
L
,
Muntasell
AJ
,
Coolen
M
,
Life-long neurogenic activity of individual neural stem cells and continuous growth establish an outside-in architecture in the teleost pallium
.
Curr Biol
.
2017
;
27
:
3288
301.e3
. .
18.
Ganz
J
,
Kaslin
J
,
Freudenreich
D
,
Machate
A
,
Geffarth
M
,
Brand
M
.
Subdivisions of the adult zebrafish subpallium by molecular marker analysis
.
J Comp Neurol
.
2012
;
520
:
633
55
. .
19.
González
A
,
Morona
R
,
López
JM
,
Moreno
N
,
Northcutt
RG
.
Lungfishes, like tetrapods, possess a vomeronasal system
.
Front Neuroanat
.
2010
;
4
:
130
. .
20.
Hamdani el
H
,
Døving
KB
.
Sensitivity and selectivity of neurons in the medial region of the olfactory bulb to skin extract from conspecifics in crucian carp, Carassius carassius
.
Chem Senses
.
2003
;
28
:
181
9
. .
21.
Hamdani el
H
,
Døving
KB
.
Specific projection of the sensory crypt cells in the olfactory system in crucian carp, Carassius carassius
.
Chem Senses
.
2006
;
31
:
63
7
.
22.
Huilgol
D
,
Tole
S
.
Cell migration in the developing rodent olfactory system
.
Cell Mol Life Sci
.
2016
;
73
:
2467
90
. .
23.
Kyle
AL
,
Peter
RE
.
Effects of forebrain lesions on spawning behaviour in the male goldfish
.
Physiol Behav
.
1982
;
28
:
1103
9
. .
24.
Kyle
AL
,
Stacey
NE
,
Peter
RE
.
Ventral telencephalic lesions: effects on bisexual behavior, activity, and olfaction in the male goldfish
.
Behav Neural Biol
.
1982
;
36
:
229
41
. .
25.
Lal
P
,
Tanabe
H
,
Suster
ML
,
Ailani
D
,
Kotani
Y
,
Muto
A
,
Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish
.
BMC Biol
.
2018
;
16
:
45
. .
26.
Lam
CS
,
Rastegar
S
,
Strähle
U
.
Distribution of cannabinoid receptor 1 in the CNS of zebrafish
.
Neuroscience
.
2006
;
138
:
83
95
. .
27.
Lau
BY
,
Mathur
P
,
Gould
GG
,
Guo
S
.
Identification of a brain center whose activity discriminates a choice behavior in zebrafish
.
Proc Natl Acad Sci U S A
.
2011
;
108
:
2581
6
. .
28.
Lebow
MA
,
Chen
A
.
Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders
.
Mol Psychiatry
.
2016
;
21
:
450
63
. .
29.
LeDoux
JE
.
Emotion circuits in the brain
.
Annu Rev Neurosci
.
2000
;
23
:
155
84
. .
30.
Levine
RL
,
Dethier
S
.
The connections between the olfactory bulb and the brain in the goldfish
.
J Comp Neurol
.
1985
;
237
:
427
44
. .
31.
Lillesaar
C
,
Stigloher
C
,
Tannhäuser
B
,
Wullimann
MF
,
Bally-Cuif
L
.
Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression
.
J Comp Neurol
.
2009
;
512
:
158
82
. .
32.
López
JM
,
Jiménez
S
,
Morona
R
,
Lozano
D
,
Moreno
N
.
Analysis of Islet-1, Nkx2.1, Pax6, and Orthopedia in the forebrain of the sturgeon Acipenser ruthenus identifies conserved prosomeric characteristics
.
J Comp Neurol
.
2022
;
530
(
5
):
834
55
. .
33.
Malsbury
CW
,
McKay
K
.
Sex difference in the substance P-immunoreactive innervation of the medial nucleus of the amygdala
.
Brain Res Bull
.
1989
;
23
:
561
7
. .
34.
Martín
I
,
Gómez
A
,
Salas
C
,
Puerto
A
,
Rodríguez
F
.
Dorsomedial pallium lesions impair taste aversion learning in goldfish
.
Neurobiol Learn Mem
.
2011
;
96
:
297
305
. .
35.
März
M
,
Schmidt
R
,
Rastegar
S
,
Strähle
U
.
Regenerative response following stab injury in the adult zebrafish telencephalon
.
Dev Dyn
.
2011
;
240
:
2221
31
. .
36.
Medina
L
,
Abellán
A
,
Desfilis
E
.
Evolution of pallial areas and networks involved in sociality: comparison between mammals and sauropsids
.
Front Physiol
.
2019
;
10
:
894
. .
37.
Medina
L
,
Bupesh
M
,
Abellán
A
.
Contribution of genoarchitecture to understanding forebrain evolution and development, with particular emphasis on the amygdala
.
Brain Behav Evol
.
2011
;
78
:
216
36
. .
38.
Morales
L
,
Castro-Robles
B
,
Abellan
A
,
Desfilis
E
,
Medina
L
.
A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala
.
J Comp Neurol
.
2021
;
529
:
2418
49
.
39.
Moreno
N
,
González
A
.
Hodological characterization of the medial amygdala in anuran amphibians
.
J Comp Neurol
.
2003
;
466
:
389
408
. .
40.
Moreno
N
,
González
A
.
Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization
.
J Comp Neurol
.
2007
;
503
:
815
31
.
41.
Moreno
N
,
López
JM
,
Morona
R
,
Lozano
D
,
Jiménez
S
,
González
A
.
Comparative analysis of Nkx2.1 and Islet-1 expression in urodele amphibians and lungfishes highlights the pattern of forebrain organization in early tetrapods
.
Front Neuroanat
.
2018
;
12
:
42
. .
42.
Mueller
T
.
What is the thalamus in zebrafish?
Front Neurosci
.
2012
;
6
:
64
. .
43.
Mueller
T
,
Dong
Z
,
Berberoglu
MA
,
Guo
S
.
The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei)
.
Brain Res
.
2011
;
1381
:
95
105
. .
44.
Mueller
T
,
Guo
S
.
The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods
.
J Comp Neurol
.
2009
;
516
:
553
68
. .
45.
Mueller
T
,
Vernier
P
,
Wullimann
MF
.
A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse
.
J Comp Neurol
.
2006
;
494
:
620
34
. .
46.
Mueller
T
,
Wullimann
MF
.
BrdU-, neuroD (nrd)- and Hu-studies reveal unusual non-ventricular neurogenesis in the postembryonic zebrafish forebrain
.
Mech Dev
.
2002
;
117
:
123
35
. .
47.
Mueller
T
,
Wullimann
MF
.
Anatomy of neurogenesis in the early zebrafish brain
.
Brain Res Dev Brain Res
.
2003
;
140
:
137
55
.
48.
Mueller
T
,
Wullimann
MF
.
An evolutionary interpretation of teleostean forebrain anatomy
.
Brain Behav Evol
.
2009
;
74
:
30
42
.
49.
Mueller
T
,
Wullimann
MF
,
Guo
S
.
Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression
.
J Comp Neurol
.
2008
;
507
:
1245
57
. .
50.
Neal
CR
 Jr
,
Swann
JM
,
Newman
SW
.
The colocalization of substance P and prodynorphin immunoreactivity in neurons of the medial preoptic area, bed nucleus of the stria terminalis and medial nucleus of the amygdala of the Syrian hamster
.
Brain Res
.
1989
;
496
:
1
13
. .
51.
Nieuwenhuys
R
.
The morphogenesis and the general structure of the actinopterygian forebrain
.
Acta Morphol Neerl Scand
.
1962
;
5
:
65
78
.
52.
Nieuwenhuys
R
.
The forebrain of actinopterygians revisited
.
Brain Behav Evol
.
2009a
;
73
:
229
52
.
53.
Nieuwenhuys
R
.
On old and new comparative neurological sinners: the evolutionary importance of the membranous parts of the actinopterygian forebrain and their sites of attachment
.
J Comp Neurol
.
2009b
;
516
:
87
93
.
54.
Northcutt
RG
.
Connections of the lateral and medial divisions of the goldfish telencephalic pallium
.
J Comp Neurol
.
2006
;
494
:
903
43
. .
55.
Northcutt
RG
.
Forebrain evolution in bony fishes
.
Brain Res Bull
.
2008
;
75
:
191
205
.
56.
Osório
J
,
Mueller
T
,
Rétaux
S
,
Vernier
P
,
Wullimann
MF
.
Phylotypic expression of the bHLH genes Neurogenin2, Neurod, and Mash1 in the mouse embryonic forebrain
.
J Comp Neurol
.
2010
;
518
:
851
71
. .
57.
Owen
R
.
Lectures on the comparative anatomy and physiology of the invertebrate animals. Delivered at the Royal College of Surgeons
.
London
:
Longman, Brown, Green, and Logmans
;
1843
.
58.
Pessoa
L
,
Medina
L
,
Hof
PR
,
Desfilis
E
.
Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition
.
Neurosci Biobehav Rev
.
2019
;
107
:
296
312
. .
59.
Portavella
M
,
Torres
B
,
Salas
C
,
Papini
MR
.
Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus)
.
Neurosci Lett
.
2004
;
362
:
75
8
. .
60.
Porter
BA
,
Mueller
T
.
The zebrafish amygdaloid complex: functional ground plan, molecular delineation, and everted topology
.
Front Neurosci
.
2020
;
14
:
608
. .
61.
Puelles
L
,
Harrison
M
,
Paxinos
G
,
Watson
C
.
A developmental ontology for the mammalian brain based on the prosomeric model
.
Trends Neurosci
.
2013
;
36
:
570
8
. .
62.
Puelles
L
,
Medina
L
,
Borello
U
,
Legaz
I
,
Teissier
A
,
Pierani
A
,
Radial derivatives of the mouse ventral pallium traced with Dbx1-LacZ reporters
.
J Chem Neuroanat
.
2016
;
75
:
2
19
. .
63.
Puelles
L
,
Rubenstein
JL
.
Forebrain gene expression domains and the evolving prosomeric model
.
Trends Neurosci
.
2003
;
26
:
469
76
. .
64.
Rodríguez-Expósito
B
,
Gómez
A
,
Martín-Monzón
I
,
Reiriz
M
,
Rodríguez
F
,
Salas
C
.
Goldfish hippocampal pallium is essential to associate temporally discontiguous events
.
Neurobiol Learn Mem
.
2017
;
139
:
128
34
. .
65.
Ruhl
T
,
Moesbauer
K
,
Oellers
N
,
von der Emde
G
.
The endocannabinoid system and associative learning and memory in zebrafish
.
Behav Brain Res
.
2015
;
290
:
61
9
. .
66.
Ruhl
T
,
Prinz
N
,
Oellers
N
,
Seidel
NI
,
Jonas
A
,
Albayram
O
,
Acute administration of THC impairs spatial but not associative memory function in zebrafish
.
Psychopharmacology
.
2014
;
231
:
3829
42
. .
67.
Ruhl
T
,
Zeymer
M
,
von der Emde
G
.
Cannabinoid modulation of zebrafish fear learning and its functional analysis investigated by c-Fos expression
.
Pharmacol Biochem Behav
.
2017
;
153
:
18
31
. .
68.
Sorensen
PW
,
Hara
TJ
,
Stacey
NE
.
Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish
.
Brain Res
.
1991
;
558
:
343
7
. .
69.
Stacey
NE
,
Kyle
AL
.
Effects of olfactory tract lesions on sexual and feeding behavior in the goldfish
.
Physiol Behav
.
1983
;
30
:
621
8
. .
70.
Stefanova
N
,
Ovtscharoff
W
.
Sexual dimorphism of the bed nucleus of the stria terminalis and the amygdala
.
Adv Anat Embryol Cell Biol
.
2000
;
158
:
III
X
, 1–78. .
71.
Swanson
LW
,
Petrovich
GD
.
What is the amygdala?
Trends Neurosci
.
1998
;
21
:
323
31
. .
72.
Teles
MC
,
Almeida
O
,
Lopes
JS
,
Oliveira
RF
.
Social interactions elicit rapid shifts in functional connectivity in the social decision-making network of zebrafish
.
Proc Biol Sci
.
2015
;
282
:
20151099
. .
73.
Thompson
JM
,
Neugebauer
V
.
Amygdala plasticity and pain
.
Pain Res Manag
.
2017
;
2017
:
8296501
.
74.
Timothy
M
,
Forlano
PM
.
Serotonin distribution in the brain of the plainfin midshipman: substrates for vocal-acoustic modulation and a reevaluation of the serotonergic system in teleost fishes
.
J Comp Neurol
.
2020
;
528
:
3451
78
. .
75.
von Trotha
JW
,
Vernier
P
,
Bally-Cuif
L
.
Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish
.
Eur J Neurosci
.
2014
;
40
(
9
):
3302
15
. .
76.
Watson
C
,
Puelles
L
.
Developmental gene expression in the mouse clarifies the organization of the claustrum and related endopiriform nuclei
.
J Comp Neurol
.
2017
;
525
:
1499
508
. .
77.
Wullimann
MF
.
Should we redefine the classic lateral pallium?
J Comp Neurol
.
2017
;
525
:
1509
13
. .
78.
Wullimann
MF
,
Mueller
T
.
Expression of Zash-1a in the postembryonic zebrafish brain allows comparison to mouse Mash1 domains
.
Brain Res Gene Expr Patterns
.
2002
;
1
:
187
92
. .
79.
Wullimann
MF
,
Mueller
T
.
Identification and morphogenesis of the eminentia thalami in the zebrafish
.
J Comp Neurol
.
2004a
;
471
:
37
48
.
80.
Wullimann
MF
,
Mueller
T
.
Teleostean and mammalian forebrains contrasted: evidence from genes to behavior
.
J Comp Neurol
.
2004b
;
475
:
143
62
.
81.
Wullimann
MF
,
Rupp
B
,
Reichert
H
.
Neuroanatomy of the zebrafish brain: a topological atlas Birkhäuser
.
1996
.
82.
Wullimann
MF
,
Umeasalugo
KE
.
Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells
.
J Comp Neurol
.
2020
;
528
:
1321
48
. .
83.
Yamamoto
K
,
Bloch
S
,
Vernier
P
.
New perspective on the regionalization of the anterior forebrain in Osteichthyes
.
Dev Growth Differ
.
2017
;
59
:
175
87
. .
84.
Yamamoto
N
,
Ishikawa
Y
,
Yoshimoto
M
,
Xue
HG
,
Bahaxar
N
,
Sawai
N
,
A new interpretation on the homology of the teleostean telencephalon based on hodology and a new eversion model
.
Brain Behav Evol
.
2007
;
69
:
96
104
. .
85.
Yanez
J
,
Folgueira
M
,
Lamas
I
,
Anadon
R
.
The organization of the zebrafish pallium from a hodological perspective
.
J Comp Neurol
.
2022
;
530
:
1164
94
.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.