Depending on the presence or absence of sulci and convolutions, the brains of mammals are classified as gyrencephalic or lissencephalic. We analyzed the encephalic anatomy of the hystricomorph rodent Lagostomus maximus in comparison with other evolutionarily related species. The encephalization quotient (EQ), gyrencephaly index (GI), and minimum cortical thickness (MCT) were calculated for the plains vizcacha as well as for other myomorph and hystricomorph rodents. The vizcacha showed a gyrencephalic brain with a sagittal longitudinal fissure that divides both hemispheres, and 3 pairs of sulci with bilateral symmetry; that is, lateral-rostral, intraparietal, and transverse sulci. The EQ had one of the lowest values among Hystricomorpha, while GI was one of the highest. Besides, the MCT was close to the mean value for the suborder. The comparison of EQ, GI, and MCT values between hystricomorph and myomorph species allowed the detection of significant variations. Both EQ and GI showed a significant increase in Hystricomorpha compared to Myomorpha, whereas a Pearson’s analysis between EQ and GI depicted an inverse correlation pattern for Hystricomorpha. Furthermore, the ratio between MCT and GI also showed a negative correlation for Hystricomorpha and Myomorpha. Our phylogenetic analyses showed that Hystricomorpha and Myomorpha do not differ in their allometric patterning between the brain and body mass, GI and brain mass, and MCT and GI. In conclusion, gyrencephalic neuroanatomy in the vizcacha could have developed from the balance between the brain size, the presence of invaginations, and the cortical thickness, which resulted in a mixed encephalization strategy for the species. Gyrencephaly in the vizcacha, as well as in other Hystricomorpha, advocates in favor of the proposal that in the more recently evolved Myomorpha lissencephaly would have arisen from a phenotype reversal process.

1.
Albert
M
,
Huttner
WB
.
Clever space saving—how the cerebral cortex folds
.
EMBO J
.
2015
Jul
;
34
(
14
):
1845
7
.
[PubMed]
0261-4189
2.
Bertrand
OC
,
Silcox
MT
.
First virtual endocasts of a fossil rodent: ischyromys typus (Ischyromyidae, Oligocene) and brain evolution in rodents
.
J Vertebr Paleontol
.
2016
;
36
(
3
):
1
19
. 0272-4634
3.
Borrell
V
,
Reillo
I
.
Emerging roles of neural stem cells in cerebral cortex development and evolution
.
Dev Neurobiol
.
2012
Jul
;
72
(
7
):
955
71
.
[PubMed]
1932-8451
4.
Contreras
JR
.
La vizcacha
.
Fauna Argentina.
1984
;
45
:
1
32
.
5.
Dorfman
VB
,
Saucedo
L
,
Di Giorgio
NP
,
Inserra
PI
,
Fraunhoffer
N
,
Leopardo
NP
, et al
Variation in progesterone receptors and GnRH expression in the hypothalamus of the pregnant South American plains vizcacha, Lagostomus maximus (Mammalia, Rodentia)
.
Biol Reprod
.
2013
Nov
;
89
(
5
):
115
25
.
[PubMed]
0006-3363
6.
Ferreira
JD
,
Negri
FR
,
Sánchez-Villagra
MR
,
Kerber
L
.
Small within the largest: brain size and anatomy of the extinct Neoepiblema acreensis, a giant rodent from the Neotropics
.
Biol Lett
.
2020
;
16
(
2
):
20190914
. 1644-7700
7.
Gariboldi
MC
,
Inserra
PI
,
Lucero
S
,
Failla
M
,
Perez
SI
,
Vitullo
AD
.
Unexpected low genetic variation in the South American hystricognath rodent Lagostomus maximus (Rodentia: chinchillidae)
.
PLoS One
.
2019
Sep
;
14
(
9
):
e0221559
.
[PubMed]
1932-6203
8.
González
CR
,
Muscarsel Isla
ML
,
Leopardo
NP
,
Willis
MA
,
Dorfman
VB
,
Vitullo
AD
.
Expression of androgen receptor, estrogen receptors alpha and beta and aromatase in the fetal, perinatal, prepubertal and adult testes of the South American plains Vizcacha, Lagostomus maximus (Mammalia, Rodentia)
.
J Reprod Dev
.
2012
;
58
(
6
):
629
35
.
[PubMed]
0916-8818
9.
Grewal
JS
,
Gloe
T
,
Hegedus
J
,
Bitterman
K
,
Billings
BK
,
Chengetanai
S
, et al
Brain gyrification in wild and domestic canids: has domestication changed the gyrification index in domestic dogs?
J Comp Neurol
.
2020
Dec
;
528
(
18
):
3209
28
.
[PubMed]
0021-9967
10.
Herculano-Houzel
S
.
Encephalization, neuronal excess, and neuronal index in rodents
.
Anat Rec (Hoboken)
.
2007
Oct
;
290
(
10
):
1280
7
.
[PubMed]
1932-8486
11.
Herculano-Houzel
S
,
Mota
B
,
Lent
R
.
Cellular scaling rules for rodent brains
.
Proc Natl Acad Sci USA
.
2006
Aug
;
103
(
32
):
12138
43
.
[PubMed]
0027-8424
12.
Hofman
MA
.
Size and shape of the cerebral cortex in mammals. I. The cortical surface
.
Brain Behav Evol
.
1985
;
27
(
1
):
28
40
.
[PubMed]
0006-8977
13.
Hogstrom
LJ
,
Westlye
LT
,
Walhovd
KB
,
Fjell
AM
.
The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification
.
Cereb Cortex
.
2013
Nov
;
23
(
11
):
2521
30
.
[PubMed]
1047-3211
14.
Huchon
D
,
Douzery
EJ
.
From the Old World to the New World: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents
.
Mol Phylogenet Evol
.
2001
Aug
;
20
(
2
):
238
51
.
[PubMed]
1055-7903
15.
Huxley
JS
.
A discussion on the measurement of growth and form; relative growth and form transformation
.
Proc R Soc Lond B Biol Sci
.
1950
Nov
;
137
(
889
):
465
9
.
[PubMed]
0080-4649
16.
Ibe
CS
,
Onyeanusi
BI
,
Hambolu
JO
.
Functional morphology of the brain of the African giant pouched rat (Cricetomys gambianus) Waterhouse, 1840)
.
Onderstepoort J Vet Res
.
2014
Mar
;
81
(
1
):
e1
7
.
[PubMed]
0030-2465
17.
Inserra
PI
,
Charif
SE
,
Di Giorgio
NP
,
Saucedo
L
,
Schmidt
AR
,
Fraunhoffer
N
, et al
ERα and GnRH co-localize in the hypothalamic neurons of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha)
.
J Mol Histol
.
2017
Jun
;
48
(
3
):
259
73
.
[PubMed]
1567-2379
18.
Jackson
JE
.
Determinación de edad en la vizcacha (Lagostomus maximus) en base al peso del cristalino
.
Vida Silvestre Neotropical.
1986
;
1
:
41
4
.
19.
Jerison
HJ
.
Evolution of the brain and intelligence
.
New York
:
Academic Press
;
1973
.
20.
Jerison
HJ
.
The theory of encephalization
.
Ann N Y Acad Sci
.
1977
Sep
;
299
1 Evolution and
:
146
60
.
[PubMed]
0077-8923
21.
Jerison
HJ
.
Animal intelligence as encephalization
.
Philos Trans R Soc Lond B Biol Sci
.
1985
Feb
;
308
(
1135
):
21
35
.
[PubMed]
0962-8436
22.
Jones
EG
,
Peters
A
.
Cerebral cortex, comparative structure and evolution of cerebral cortex.
1990
; ISBN 978-1-4615-3824-0.
23.
Kelava
I
,
Lewitus
E
,
Huttner
WB
.
The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal
.
Front Neuroanat
.
2013
Jun
;
7
(
16
):
16
.
[PubMed]
1662-5129
24.
Kelava
I
,
Reillo
I
,
Murayama
AY
,
Kalinka
AT
,
Stenzel
D
,
Tomancak
P
, et al
Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus
.
Cereb Cortex
.
2012
Feb
;
22
(
2
):
469
81
.
[PubMed]
1047-3211
25.
Krubitzer
L
,
Campi
KL
,
Cooke
DF
.
All rodents are not the same: a modern synthesis of cortical organization
.
Brain Behav Evol
.
2011
;
78
(
1
):
51
93
.
[PubMed]
1421-9743
26.
Kruska
DC
.
On the evolutionary significance of encephalization in some eutherian mammals: effects of adaptive radiation, domestication, and feralization
.
Brain Behav Evol
.
2005
;
65
(
2
):
73
108
.
[PubMed]
0006-8977
27.
Lewitus
E
,
Kelava
I
,
Kalinka
AT
,
Tomancak
P
,
Huttner
WB
.
An adaptive threshold in mammalian neocortical evolution
.
PLoS Biol
.
2014
Nov
;
12
(
11
):
e1002000
.
[PubMed]
1544-9173
28.
Manger
PR
.
Establishing order at the systems level in mammalian brain evolution
.
Brain Res Bull
.
2005
Sep
;
66
(
4-6
):
282
9
.
[PubMed]
0361-9230
29.
Manger
PR
,
Cort
J
,
Ebrahim
N
,
Goodman
A
,
Henning
J
,
Karolia
M
, et al
Is 21st century neuroscience too focussed on the rat/mouse model of brain function and dysfunction?
Front Neuroanat
.
2008
Nov
;
2
:
5
.
[PubMed]
1662-5129
30.
National Research Council USA
.
Guide for the Care and Use of Laboratory Animals
. 8th ed.
Washington
:
The National Academies Press
;
2011
.
31.
O’Leary
MA
,
Bloch
JI
,
Flynn
JJ
,
Gaudin
TJ
,
Giallombardo
A
,
Giannini
NP
, et al
The placental mammal ancestor and the post-K-Pg radiation of placentals
.
Science
.
2013
Feb
;
339
(
6120
):
662
7
.
[PubMed]
0036-8075
32.
Ono
M
,
Kubik
S
,
Abernathey
CD
.
Atlas of Cerebral Sulci
.
Stuttgart
:
Thieme
;
1990
.
33.
Pillay
P
,
Manger
PR
.
Order-specific quantitative patterns of cortical gyrification
.
Eur J Neurosci
.
2007
May
;
25
(
9
):
2705
12
.
[PubMed]
0953-816X
34.
Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18:383–388.
35.
Rakic
P
,
Ayoub
AE
,
Breunig
JJ
,
Dominguez
MH
.
Decision by division: making cortical maps
.
Trends Neurosci
.
2009
May
;
32
(
5
):
291
301
.
[PubMed]
0166-2236
36.
Schmidt
AR
,
Inserra
PI
,
Cortasa
SA
,
Charif
SE
,
Proietto
S
,
Corso
MC
, et al
Structural organization, GABAergic and tyrosine hydroxylase expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha)
.
J Mol Histol
.
2019
Dec
;
50
(
6
):
515
31
.
[PubMed]
1567-2379
37.
Smaers
JB
,
Mongle
CS
. Evomap: r package for the evolutionary mapping of continuous traits. Github. Available from: https://github.com/JeroenSmaers/evomap
38.
Smaers
JB
,
Rohlf
FJ
.
Testing species’ deviation from allometric predictions using the phylogenetic regression
.
Evolution
.
2016
May
;
70
(
5
):
1145
9
.
[PubMed]
1558-5646
39.
Snell
O
.
Das Gewicht des Gehirns und des Hirnmantels der Saugetiere in Beziehung zu deren geistigen Fahigkeiten
.
Sitzungsberichte Ges. Morphol Physiol.
1891
;
7
:
90
4
.
40.
Spotorno
AE
,
Zuleta
CA
,
Valladares
JP
,
Deane
AL
,
Jiménez
JE
.
Chinchilla lanigera
.
Mamm Species
.
2004
;
758
:
1
9
. 0076-3519
41.
Steppan
SJ
,
Schenk
JJ
.
Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates
.
PLoS One
.
2017
Aug
;
12
(
8
):
e0183070
.
[PubMed]
1932-6203
42.
Striedter
G
.
Principles of brain evolution
.
Sunderland (MA)
:
Sinauer Associates
;
2005
.
43.
Striedter
GF
,
Srinivasan
S
,
Monuki
ES
.
Cortical folding: when, where, how, and why?
Annu Rev Neurosci
.
2015
Jul
;
38
(
1
):
291
307
.
[PubMed]
0147-006X
44.
Toro
R
,
Burnod
Y
.
A morphogenetic model for the development of cortical convolutions
.
Cereb Cortex
.
2005
Dec
;
15
(
12
):
1900
13
.
[PubMed]
1047-3211
45.
Triarhou
LC
.
The comparative neurology of neocortical gyration and the quest for functional specialization
.
Front Syst Neurosci
.
2017
Dec
;
11
:
96
.
[PubMed]
1662-5137
46.
Voloch
CM
,
Vilela
JF
,
Loss-Oliveira
L
,
Schrago
CG
.
Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America
.
BMC Res Notes
.
2013
Apr
;
6
(
1
):
160
.
[PubMed]
1756-0500
47.
Welker
W
. Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci, In Comparative structure and evolution of cerebral cortex, Part 2, ed. EG Jones, A Peters,
1990
; 10(8B):3–136.
48.
Wilson
DE
,
Reeder
DA
.
Mammal species of the world: a taxonomic and geographic reference
. 3rd ed.
Johns Hopkins
;
2006
.
49.
Zilles
K
,
Armstrong
E
,
Schleicher
A
,
Kretschmann
HJ
.
The human pattern of gyrification in the cerebral cortex
.
Anat Embryol (Berl)
.
1988
;
179
(
2
):
173
9
.
[PubMed]
0340-2061
50.
Zilles
K
,
Palomero-Gallagher
N
,
Amunts
K
.
Development of cortical folding during evolution and ontogeny
.
Trends Neurosci
.
2013
May
;
36
(
5
):
275
84
.
[PubMed]
0166-2236
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.