Paleoneurology deals with the study of brain anatomy in fossil species, as inferred from the morphology of their endocranial features. When compared with other living and extinct hominids, Homo sapiens is characterized by larger parietal bones and, according to the paleoneurological evidence, also by larger parietal lobes. The dorsal elements of the posterior parietal cortex (superior parietal lobules, precuneus, and intraparietal sulcus) may be involved in these morphological changes. This parietal expansion was also associated with an increase in the corresponding vascular networks, and possibly with increased heat loads. Only H. sapiens has a specific early ontogenetic stage in which brain form achieves such globular appearance. In adult modern humans, the precuneus displays remarkable variation, being largely responsible for the longitudinal parietal size. The precuneus is also much more expanded in modern humans than in chimpanzees. Parietal expansion is not influenced by brain size in fossil hominids or living primates. Therefore, our larger parietal cortex must be interpreted as a derived feature. Spatial models suggest that the dorsal and anterior areas of the precuneus might be involved in these derived morphological variations. These areas are crucial for visuospatial integration, and are sensitive to both genetic and environmental influences. This article reviews almost 20 years of my collaborations on human parietal lobe evolution, integrating functional craniology, paleoneurology, and evolutionary neuroanatomy.

1.
Allen JS, Damasio H, Grabowski TJ (2002): Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118: 341–358.
2.
Barks SK, Parr LA, Rilling JL (2015): The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans. Cereb Cortex 25: 538–544.
3.
Beaudet A, Bruner E (2017): A frontal lobe surface analysis in three archaic African human fossils: OH 9, Buia, and Bodo. Comptes Rendus Palevol 16: 499–507.
4.
Bookstein F, Schafer K, Prossinger H, Seidler H, Fieder M, Stringer C, Weber GW, Arsuaga JL, Slice DE, Rohlf FJ, Recheis W, Mariam AJ, Marcus LF (1999): Comparing frontal cranial profiles in archaic and modern Homo by morphometric analysis. Anat Rec 257: 217–224.
5.
Bruner E (2004): Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. J Hum Evol 47: 279–303.
6.
Bruner E (2010): Morphological differences in the parietal lobes within the human genus: a neurofunctional perspective. Curr Anthropol 51:S77–S88.
7.
Bruner E (2014): Functional craniology, human evolution, and anatomical constraints in the Neanderthal braincase; in Akazawa T, Ogihara N, Tanabe HC, Terashima H (eds): Dynamics of Learning in Neanderthals and Modern Humans. Tokyo, Springer, vol 2, pp 121–129.
8.
Bruner E (2015): Functional craniology and brain evolution; in Bruner E (ed): Human Paleoneurology. Basel, Springer, pp 57–94.
9.
Bruner E (2017a): The fossil evidence of human brain evolution; in Kaas J (ed): Evolution of Nervous Systems, ed 2. Oxford, Elsevier, vol 4, pp 63–92.
10.
Bruner E (2017b): Language, paleoneurology, and the fronto-parietal system. Front Hum Neurosci 11: 349.
11.
Bruner E, Amano H, de la Cuétara JM, Ogihara N (2015a): The brain and the braincase: a spatial analysis on the midsagittal profile in adult humans. J Anat 227: 268–276.
12.
Bruner E, Amano H, Pereira-Pedro AS, Ogihara N (2018a): The evolution of the parietal lobes in the genus Homo; in Bruner E, Ogihara N, Tanabe H (eds): Digital Endocasts. Tokyo, Springer, pp 219–258.
13.
Bruner E, de la Cuétara JM, Holloway RL (2011a): A bivariate approach to the variation of the parietal curvature in the genus Homo. Anat Rec 294: 1548–1556.
14.
Bruner E, de la Cuétara JM, Masters M, Amano H, Ogihara N (2014a): Functional craniology and brain evolution: from paleontology to biomedicine. Front Neuroanat 8: 19.
15.
Bruner E, de La Cuétara JM, Musso F (2012): Quantifying patterns of endocranial heat distribution: brain geometry and thermoregulation. Am J Hum Biol 24: 753–762.
16.
Bruner E, Esteve-Altava B, Rasskin-Gutman D (2018b): Networking brains: modeling spatial relationships of the cerebral cortex; in Bruner E, Ogihara N, Tanabe H (eds): Digital Endocasts. Tokyo, Springer, pp 191–204.
17.
Bruner E, Grimaud-Hervé D, Wu X, de la Cuétara JM, Holloway R (2015c): A paleoneurological survey of Homo erectus endocranial metrics. Quat Int 368: 80–87.
18.
Bruner E, Iriki A (2016): Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quat Int 405: 98–110.
19.
Bruner E, Lozano M (2014): Extended mind and visuo-spatial integration: three hands for the Neandertal lineage. J Anthropol Sci 92: 273–280.
20.
Bruner E, Lozano M (2015): Three hands: one year later. J Anthropol Sci 93: 191–195.
21.
Bruner E, Lozano M, Lorenzo C (2016): Visuospatial integration and human evolution: the fossil evidence. J Anthropol Sci 94: 81–97.
22.
Bruner E, Mantini S, Musso F, de la Cuétara JM, Ripani M, Sherkat S (2011b): The evolution of the meningeal vascular system in the human genus: from brain shape to thermoregulation. Am J Hum Biol 23: 35–43.
23.
Bruner E, Mantini S, Perna A, Maffei C, Manzi G (2005): Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus, Neanderthals, and modern humans. Eur J Morphol 42: 217–224.
24.
Bruner E, Manzi G, Arsuaga JL (2003): Encephalization and allometric trajectories in the genus Homo: evidence from the Neandertal and modern lineages. Proc Natl Acad Sci USA 100: 15335–15340.
25.
Bruner E, Ogihara N (2018): Surfin’ endocasts: the good and the bad on brain form. Palaentol Electr 21.1.1A: 1–10.
26.
Bruner E, Pearson O (2013): Neurocranial evolution in modern humans: the case of Jebel Irhoud 1. Anthropol Sci 121: 31–41.
27.
Bruner E, Pereira-Pedro AS, Bastir M (2017a): Patterns of morphological integration between parietal and temporal areas in the human skull. J Morphol 278: 1312–1320.
28.
Bruner E, Pereira-Pedro AS, Chen X, Rilling JK (2017b): Precuneus proportions and cortical folding: a morphometric evaluation on a racially diverse human sample. Ann Anat 211: 120–128.
29.
Bruner E, Preuss T, Chen X, Rilling J (2017c): Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 222: 1053–1060.
30.
Bruner E, Rangel de Lázaro G, de la Cuétara JM, Martín-Loeches M, Colóm R, Jacobs HIL (2014b): Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. J Anat 224: 367–376.
31.
Bruner E, Román FJ, de la Cuétara JM, Martín-Loeches M, Colóm R (2015b): Cortical surface area and cortical thickness in the precuneus of adult humans. Neuroscience 286: 345–352.
32.
Bruner E, Saracino B, Ricci F, Tafuri M, Passarello P, Manzi G (2004): Midsagittal cranial shape variation in the genus Homo by geometric morphometrics. Coll Antropol 28: 99–112.
33.
Bruner E, Sherkat S (2008): The middle meningeal artery: from clinics to fossils. Childs Nerv Syst 24: 1289–1298.
34.
Byrge L, Sporns O, Smith LB (2014): Developmental process emerges from extended brain-body-behavior networks. Trends Cogn Sci 18: 395–403.
35.
Bzdok D, Hartwigsen G, Reid A, Laird AR, Fox PT, Eickhoff SB (2016): Left inferior parietal lobe engagement in social cognition and language. Neurosci Biobehav Rev 68: 319–334.
36.
Bzdok D, Heeger A, Langner R, Laird AR, Fox PT, Palomero-Gallagher N, Vogt BA, Zilles K, Eickhoff SB (2015): Subspecialization in the human posterior medial cortex. NeuroImage 106: 55–71.
37.
Caminiti R, Innocenti GM, Battaglia-Mayer A (2015): Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans. Neurosci Biobehav Rev 56: 73–96.
38.
Catani M, Robertsson N, Beyh A, Huynh V, de Santiago Requejo F, Howells H, Barrett RLC, Aiello M, Cavaliere C, Dyrby TB, Krug K, Ptito M, D’Arceuil H, Forkel SJ, Dell’Acqua F (2017): Short parietal lobe connections of the human and monkey brain. Cortex 97: 339–357.
39.
Cavanna AE, Trimble MR (2006): The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129: 564–583.
40.
Chen CH, Gutierrez ED, Thompson W, Panizzon MS, Jernigan TL, Eyler LT, Fennema-Notestine C, Jak AJ, Neale MC, Franz CE, Lyons MJ, Grant MD, Fischl B, Seidman LJ, Tsuang MT, Kremen WS, Dale AM (2012): Hierarchical genetic organization of human cortical surface area. Science 335: 1634–1636.
41.
Choi H-J, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006): Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495: 53–69.
42.
Crispo E (2007): The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61: 2469–2479.
43.
De Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, MacLeod CE, Hof PR, Frahm H, Zilles K (2010): Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58: 281–292.
44.
Falk D (1987): Hominid paleoneurology. Annu Rev Anthropol 16: 13–30.
45.
Fletcher PC, Frith CD, Baker SC, Shallice T, Frackowiak RSJ, Dolan RJ (1995): The mind’s eye – precuneus activation in memory-related imagery. NeuroImage 2: 195–200.
46.
Fransson P, Marrelec G (2008): The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. NeuroImage 42: 1178–1184.
47.
Freton M, Lemogne C, Bergouignan L, Delaveau P, Lehéricy S, Fossati P (2014): The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval. Brain Struct Funct 219: 959–968.
48.
Grefkes C, Fink GR (2005): The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207: 3–17.
49.
Gunz P, Harvati K (2007): The Neanderthal “chignon”: variation, integration, and homology. J Hum Evol 52: 262–274.
50.
Gunz P, Neubauer S, Maureille B, Hublin J-J (2010): Brain development after birth differs between Neanderthals and modern humans. Curr Biol 20:R921–R922.
51.
Hammer Ø, Harper D, Ryan P (2001): PAST: paleontological statistics software package for education and data analysis. Palaeontol Electr 4: 9.
52.
Hills TT, Todd PM, Lazer D, Redish AD, Couzin ID (2015): Exploration versus exploitation in space, mind, and society. Trends Cogn Sci 19: 46–54.
53.
Holloway RL (1981): Exploring the dorsal surface of hominoid brain endocasts by stereoplotter and discriminant analysis. Philos Trans R Soc Lond B 292: 155–166.
54.
Holloway RL, Broadfield DC, Yuan MS (2004): The Human Fossil Record, vol III: Brain Endocasts: The Paleoneurological Evidence. Hoboken, Wiley-Liss.
55.
Hutchison RM, Culham JC, Flanagan JR, Everling S, Gallivan JP (2015): Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI. NeuroImage 116: 10–29.
56.
Iriki A, Taoka M (2012): Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Philos Trans R Soc Lond B Biol Sci 367: 10–23.
57.
Jung RE, Haier RJ (2007): The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30: 135–154.
58.
Kastner S, Chen Q, Jeong SK, Mruczek REB (2017): A brief comparative review of primate posterior parietal cortex: a novel hypothesis on the human toolmaker. Neuropsychologia 105: 123–134.
59.
Klingenberg CP (2011): MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11: 353–357.
60.
Kobayashi Y, Matsui T, Haizuka Y, Ogihara N, Hirai N, Matsumura G (2014): Cerebral sulci and gyri observed on macaque endocasts: in Akazawa T, Ogihara N, Tanabe HC, Tera­shima H (eds): Dynamics of Learning in Neanderthals and Modern Humans. Tokyo, Springer, vol 2, pp 131–137.
61.
Koscik T, O’Leary D, Moser DJ, Andreasen NC, Nopoulos P (2009): Sex differences in parietal lobe morphology: relationship to mental rotation performance. Brain Cogn 69: 451–459.
62.
Land MF (2014): Do we have an internal model of the outside world? Philos Trans R Soc Lond B Biol Sci 369: 20130045–20130045.
63.
Lieberman DE, McBratney BM, Krovitz G (2002): The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA 99: 1134–1139.
64.
Maister L, Slater M, Sanchez-Vives MV, Tsakiris M (2015): Changing bodies changes minds: owning another body affects social cognition. Trends Cogn Sci 19: 6–12.
65.
Malafouris L (2010): The brain-artefact interface (BAI): a challenge for archaeology and cultural neuroscience. Soc Cogn Affect Neurosci 5: 264–273.
66.
Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos FX, Milham MP, Petrides M (2009): Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci USA 106: 20069–20074.
67.
Martin K, Jacobs S, Frey SH (2011): Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning. NeuroImage 57: 502–512.
68.
Moss ML, Young RW (1960): A functional approach to craniology. Am J Phys Anthropol 18: 281–292.
69.
Mountcastle VB (1995): The parietal system and some higher brain functions. Cereb Cortex 5: 377–390.
70.
Neubauer S, Gunz P, Hublin J-J (2009): The pattern of endocranial ontogenetic shape changes in humans. J Anat 215: 240–255.
71.
Neubauer S, Gunz P, Hublin J-J (2010): Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59: 555–566.
72.
Neubauer S, Hublin J-J, Gunz P (2018): The evolution of modern human brain shape. Sci Adv 4:eaao5961.
73.
Orban GA (2016): Functional definitions of parietal areas in human and non-human primates. Proc Biol Sci 283: 20160118.
74.
Pearce E, Stringer C, Dunbar RIM (2013): New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proc Biol Sci 280: 1758.
75.
Peer M, Salomon R, Goldberg I, Blanke O, Arzy S (2015): Brain system for mental orientation in space, time, and person. Proc Natl Acad Sci USA 112: 11072–11077.
76.
Pereira-Pedro AS, Bruner E (2016): Sulcal pattern, extension, and morphology of the precuneus in adult humans. Ann Anat 208: 85–93.
77.
Pereira-Pedro AS, Bruner E (2018): Landmarking endocasts; in Bruner E, Ogihara N, Tanabe H (eds): Digital Endocasts. Tokyo, Springer, pp 127–142.
78.
Pereira-Pedro AS, Masters M, Bruner E (2017a): Shape analysis of spatial relationships between orbito-ocular and endocranial structures in modern humans and fossil hominids. J Anat 231: 947–960.
79.
Pereira-Pedro AS, Rilling JL, Chen X, Preuss TM, Bruner E (2017b): Midsagittal brain variation among non-human primates: insights into evolutionary expansion of the human precuneus. Brain Behav Evol 90: 255–263.
80.
Plummer T (2004): Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Yrb Phys Anthropol 47: 118–164.
81.
Ponce de León MS, Bienvenu T, Akazawa T, Zollikofer CPE (2016): Brain development is similar in Neanderthals and modern humans. Curr Biol 26:R665–R666.
82.
Quallo MM, Price CJ, Ueno K, Asamizuya T, Cheng K, Lemon RN, Iriki A (2009): Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci USA 106: 18379–18384.
83.
Rangel de Lázaro G, de la Cuétara JM, Píšová H, Lorenzo C, Bruner E (2016): Diploic vessels and computed tomography: segmentation and comparison in modern humans and fossil hominids. Am J Phys Anthropol 159: 313–324.
84.
Richtsmeier JT, Aldridge K, de Leon VB, Panchal J, Kane AA, Marsh JL, Yan P, Cole TM (2006): Phenotypic integration of neurocranium and brain. J Exp Zool 306B: 360–378.
85.
Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008): Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18: 846–867.
86.
Scott N, Neubauer S, Hublin JJ, Gunz P (2014): A shared pattern of postnatal endocranial development in extant hominoids. Evol Biol 41: 572–594.
87.
Semendeferi K, Damasio H (2000): The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38: 317–332.
88.
Semendeferi K, Lu A, Schenker N, Damasio H (2002): Humans and great apes share a large frontal cortex, Nat Neurosci 5: 272–276.
89.
Sousa AMM, Zhu Y, Raghanti MA, Kitchen RR, Onorati M, Tebbenkamp ATN, Stutz B, Meyer KA, Li M, Kawasawa YI, Liu F, Perez RG, Mele M, Carvalho T, Skarica M, Gulden FO, Pletikos M, Shibata A, Stephenson AR, Edler MK, Ely JJ, Elsworth JD, Horvath TL, Hof PR, Hyde TM, Kleinman JE, Weinberger DR, Reimers M, Lifton RP, Mane SM, Noonan JP, State MW, Lein ES, Knowles JA, Marques-Bonet T, Sherwood CC, Gerstein MB, Sestan N (2017): Molecular and cellular reorganization of neural circuits in the human lineage. Science 358: 1027–1032.
90.
Sulpizio V, Committeri G, Lambrey S, Berthoz A, Galati G (2016): Role of the human retro­splenial cortex/parieto-occipital sulcus in perspective priming. NeuroImage 125: 108–119.
91.
Tunik E, Rice NJ, Hamilton A, Grafton ST (2007): Beyond grasping: representation of action in human anterior intraparietal sulcus. NeuroImage 36:T77–T86.
92.
Utevsky AV, Smith DV, Huettel SA (2014): Precuneus is a functional core of the default-mode network. J Neurosci 34: 932–940.
93.
Van Minh N, Hamada Y (2017): Age-related changes of sulcal imprints on the endocranium in the Japanese macaque (Macaca fuscata). Am J Phys Anthropol 163: 285–294.
94.
Verhagen L, Dijkerman HC, Medendorp WP, Toni I (2012): Cortical dynamics of senso­rimotor integration during grasp planning. J Neurosci 32: 4508–4519.
95.
Yang Z, Chang C, Xu T, Jiang L, Handwerker DA, Castellanos FX, Milham MP, Bandettini PA, Zuo XN (2014): Connectivity trajectory across lifespan differentiates the precuneus from the default network. NeuroImage 89: 45–56.
96.
Zhang S, Li CR (2012): Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage 59: 3548–3562.
97.
Zilles K, Amunts K (2010): Centenary of Brodmann’s map – conception and fate. Nat Rev Neurosci 11: 139–145.
98.
Zilles K, Palomero-Gallagher N (2001): Cyto-, myelo-, and receptor architectonics of the human parietal cortex. NeuroImage 14:S8–S20.
99.
Zlatkina V, Petrides M (2014): Morphological patterns of the intraparietal sulcus and the anterior intermediate parietal sulcus of Jensen in the human brain. Proc Biol Sci 281: 20141493.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.