Abstract
The amphibian retina projects to two discrete regions of neuropil in the anterior thalamus: the neuropil of Bellonci and the corpus geniculatum. These retinorecipient areas are encompassed within a larger zone of surrounding neuropil we call the NCZ (for neuropil of Bellonci/corpus geniculatum zone). The NCZ is characterized electrophysiologically by a distinctive tonic oscillatory response to blue light; it appears to be a visual module involved in processing the stationary visual environment. Using horseradish peroxidase (HRP), we mapped the connections of the NCZ. Retrogradely labeled cell bodies are found in: (1) the contralateral anterior thalamus; (2) both retinas; and (3) the posterior medial dorsal thalamus (PMDT). Anterogradely labeled fibers are found in: (1) the contralateral anterior thalamus; (2) the ipsilateral PMDT; (3) the ipsilateral neuropil lateral to the posterior tuberculum in the ventrolateral posterior thalamus; and (4) the ipsilateral anterior medulla. There are no direct connections between the NCZ and the telencephalon, the tectum, or the suprachiasmatic nucleus. Applying HRP to the PMDT, we found that its inputs are limited to the contralateral and ipsilateral NCZ and the contralateral PMDT. Thus, PMDT appears to be a satellite of the NCZ. Blue light elicits tonic oscillatory electrical responses in the PMDT quite similar to the responses to blue light in the NCZ. We discuss how the leopard frog NCZ and the mammalian ventral lateral geniculate nucleus share anatomical and physiological properties.