We investigated the morphology of four primary neocortical projection areas (somatomotor, somatosensory, auditory, visual) qualitatively and quantitatively in the Indian river dolphins (Platanista gangetica gangetica, P. gangetica minor) with histological and stereological methods. For comparison, we included brains of other toothed whale species. Design-based stereology was applied to the primary neocortical areas (M1, S1, A1, V1) of the Indian river dolphins and compared to those of the bottlenose dolphin with respect to layers III and V. These neocortical fields were identified using existing electrophysiological and morphological data from marine dolphins as to their topography and histological structure, including the characteristics of the neuron populations concerned. In contrast to other toothed whales, the visual area (V1) of the ‘blind' river dolphins seems to be rather small. M1 is displaced laterally and the auditory area (A1) is larger than in marine species with respect to total brain size. The layering is similar in the cortices of all the toothed whale brains investigated; a layer IV could not be identified. Cell density in layer III is always higher than in layer V. The maximal neuron density in P. gangetica gangetica is found in layer III of A1, followed by layers III in V1, S1, and M1. The cell density in layer V is at a similar level in all primary areas. There are, however, some differences in neuron density between the two subspecies of Indian river dolphins. Taken as a whole, it appears that the neocortex of platanistids exhibits a considerable expansion of the auditory field. Even more than other toothed whales, they seem to depend on their biosonar abilities for navigation, hunting, and communication in their riverine habitat.

1.
Arnold PW (2009): Irrawaddy Dolphin Orcaella brevirostris; in Perrin WF, Würsig B, Thewissen JGM (eds): Encyclopedia of Marine Mammals, ed 2. San Diego, Academic Press, pp 652-654.
2.
Au WWL (2000): Echolocation in Dolphins; in Au WWL, Popper AN, Fay RR (eds): Hearing by Whales and Dolphins. New York, Springer, pp 364-408.
3.
Barbas H, García-Cabezas MÁ (2015): Motor cortex layer 4: less is more. Trends Neurosci 38:5.
4.
Bjorge A, Tolley KA (2009): Harbor porpoise Phocoena phocoena; in Perrin WF, Würsig B, Thewissen JGM (eds): Encyclopedia of Marine Mammals, ed 2. San Diego, Academic Press, pp 530-532.
5.
Bloedel JR, Ebner TJ, Wise SP (1996): The Acquisition of Motor Behaviour in Vertebrates. Cambridge, MIT Press.
6.
Blois-Heulin C, Crével M, Böye M, Lemasson A (2012): Visual laterality in dolphins: importance of the familiarity of stimuli. BMC Neurosci 13:9.
7.
Czech-Damal NU, Liebschner A, Miersch L, Klauer G, Hanke FD, Marshall C, Dehnhard G, Hanke W (2011): Electroreception in the Guiana dolphin (Sotalia guianensis). Proc R Soc B 22:663-668.
8.
Deacon TW (1990): Rethinking mammalian brain evolution. Am Zool 30:629-705.
9.
Drake SE, Crish SD, George JC, Stimmelmayr R, Thewissen JGM (2015): Sensory hairs in the Bowhead whale, Balaena mysticetus(Cetacea, Mammalia). Anat Rec 298:1327-1335.
10.
Dubrovsky NA (2004): Echolocation system of the bottlenose dolphin. Acoust Phys 50:305-317.
11.
Eriksen N, Pakkenberg B (2007): Total neocortical cell number in the mysticete brain. Anat Rec 290:83-95.
12.
Evans WE (1973): Echolocation by marine delphinids and one species of freshwater dolphin. J Acoust Soc Am 54:191-199.
13.
Ferrer I, Pereira M (1988): Structure and nerve cell organization in the cerebral cortex of the dolphin Stenella coeruleoalba, a Golgi study. With special attention to the primary auditory area. Anat Embryol (Berl) 178:161-173.
14.
Fung C, Schleicher A, Kowalski T, Oelschläger HHA (2005): Mapping auditory cortex in the La Plata dolphin (Pontoporia blainvillei). Brain Res Bull 66:353-356.
15.
Furutani R (2008): Laminar and cytoarchitectonic features of the cerebral cortex in the Risso's dolphin (Grampus griseus), striped dolphin (Stenella coeruleoalba), and bottlenose dolphin (Tursiops truncatus). J Anat 213:241-248.
16.
Garey LJ, Leuba G (1986): A quantitative study of neuronal and glial numerical density in the visual cortex of the bottlenose dolphin: evidence for a specialized subarea and changes with age. J Comp Neurol 247:491-496.
17.
Garey LJ, Winkelmann E, Brauer K (1985): Golgi and Nissl studies of the visual cortex of the bottlenose dolphin. J Comp Neurol 240:305-321.
18.
Geisler JH, McGowen MR, Yang G, Gatesy J (2011): A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol Biol 11:39.
19.
Gihr M, Pilleri G (1969): Hirn-Körpergewichts-Beziehungen bei Cetaceen; in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol I, pp 109-126.
20.
Gihr M, Pilleri G, Zhou K (1979): Cephalization of the Chinese river dolphin Lipotes vexillifer (PIatanistoidea, Lipotidae); in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol X, pp 257-274.
21.
Glezer II (2002): Neural morphology; in Hoelzel AR (ed): Marine Mammal Biology. Malden, Blackwell Science, pp 98-115.
22.
Glezer II, Hof PR, Csaba L, Morgane PJ (1992): Morphological and histochemical features of odontocete visual neocortex: immunocytochemical analysis of pyramidal and non-pyramidal populations of neurons; in Thomas J, Kastelein RA, Supin AY (eds): Marine Mammal Sensory Systems. New York, Plenum Press, pp 1-38.
23.
Glezer II, Hof PR, Morgane PJ (1998): Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanatomy 15:203-237.
24.
Glezer II, Morgane PJ (1990): Ultrastructure of synapses and Golgi analysis of neurons in neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale. Brain Res Bull 24:401-427.
25.
Glezer II, Morgane PJ, Jacobs MS (1988): Implications of the ‘initial brain' concept for the brain evolution in Cetaceans. Behav Brain Sci 11:75-116.
26.
Glezer II, Morgane PJ, Leranth C (1991): Immunocytochemistry of neurotransmitters in visual neocortex of several toothed whales: light and electron microscopic study; in Thomas J, Kastelein RA (eds): Sensory Abilities of Cetaceans: Laboratory and Field Evidence. New York, Plenum Press, pp 39-67.
27.
Gundersen HJG (1986): Stereology of arbitrary particles: a review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143:3-45.
28.
Haug H (1987): Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores and one elephant). Am J Anat 180:126-142.
29.
Herald ES, Brownell RL, Frye FL, Morris EJ, Evans WE, Scott AB (1969): Blind river dolphin: first side-swimming cetacean. Science 166:1408-1410.
30.
Hof PR, Chanis R, Marino L (2005): Cortical complexity in cetacean brains. Anat Rec 287:1142-1152.
31.
Hof PR, Sherwood CC (2005): Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec A Discov Mol Cell Evol Biol 287:1153-1163.
32.
Hof PR, Sherwood CC (2007): The evolution of neuron classes in the neocortex of mammals; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems: Mammals. Oxford, Academic Press, vol 3, pp 113-124.
33.
Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992): The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146:91-95.
34.
Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000): Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55:300-310.
35.
Hof PR, van der Gucht E (2007): Structure of the cerebral cortex of the humpback whale, Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec 290:1-31.
36.
Jensen FH, Bejder L, Wahlberg M, Madsen PT (2009): Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. J Exp Biol 212:1078-1086.
37.
Jensen FH, Rocco A, Mansur RM, Smith BD, Janik VM, et al. (2013): Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges river dolphins in a shallow, acoustically complex habitat. PLoS One 8:4.
38.
Jones EG (1967): Pattern of cortical and thalamic connexions of the somatic sensory cortex. Nature 216:704-705.
39.
Kern A, Siebert U, Cozzi B, Hof PR, Oelschläger HHA (2011): Stereology of the neocortex in odontocetes: qualitative, quantitative, and functional implications. Brain Behav Evol 77:79-90.
40.
Kraus C, Pilleri G (1969): Quantitative Untersuchung über die Grosshirnrinde der Cetaceen; in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol I, pp 127-150.
41.
Ladygina TF, Mass AM, Supin AY (1978): Multiple sensory projections in the dolphin cerebral cortex (in Russian). Zhurnal Vyssheĭ Nervnoĭ Deiatelnosti Imeni I P Pavlova 28:1047-1045.
42.
Ladygina TF, Supin AY (1970): The acoustic projection in the dolphin cerebral cortex. Fiziol Zh SSSR Im IM Sechanova 56:1554-1560.
43.
Ladygina TF, Supin AY (1977): Localization of the projectional sensory areas in the cortex of the Atlantic bottlenose dolphin (Tursiops truncatus). Zh Evol Biokhim Fiziol 13:712-718.
44.
Ladygina TF, Supin AY (1978): On homology of the different regions of the brain's cortex of cetacea and other mammals; in Sokolov VY (ed): Morskiye Mlekopitayushchiye: Resul'taty I Metody Issledovaniya. Moscow, Izdatel'stvo Nauka, pp 55-66.
45.
Lende RA, Akdikmen S (1968): Motor field in cerebral cortex of the bottlenose dolphin. J Neurosurg 29:495-499.
46.
Lende RA, Welker WI (1972): An unusual sensory area in the cerebral neocortex of the bottlenose dolphin, Tursiops truncatus. Brain Res 45:555-560.
47.
Linden JF, Schreiner CE (2003): Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cereb Cortex 13:83-89.
48.
Majewska AK, Sur M (2006): Plasticity and specificity of cortical processing networks. Trends Neurosci 29:6.
49.
Manger PR (2006): An examination of cetacean brain structure with a novel hypothesis correlating thermogenesis to the evolution of a big brain. Biol Rev Camb Philos Soc 81:293-338.
50.
Marino L (2007): Cetacean brain evolution; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. Oxford, Academic Press, vol 3, pp 261-266.
51.
Martin RE, Pine RH, DeBlase AF (2011): A Manual of Mammalogy: With Keys to Families of the World, ed 3. Long Grove, Waveland Press.
52.
Morgane PJ, Glezer II (1990): Sensory neocortex in dolphin brain; in Thomas JA, Kastelein RA (eds): Sensory Abilities of Cetaceans: Laboratory and Field Evidence. NATO ASI Series A: Life Sciences. New York, Plenum Press, pp 107-136.
53.
Morgane PJ, Glezer II, Jacobs MS (1988): Visual cortex of the dolphin: an image analysis study. J Comp Neurol 273:3-25.
54.
Morgane PJ, Glezer II, Jacobs MS (1990): Comparative and evolutionary anatomy of the visual cortex of the dolphin; in Jones EG, Peters A (eds): Cerebral Cortex. New York, Plenum Press, vol 8B, pp 215-262.
55.
Morgane PJ, Jacobs MS (1972): Comparative anatomy of the cetacean nervous system; in Harrison RJ (ed): Functional Anatomy of Marine Mammals. London, Academic Press, vol 1, pp 117-244.
56.
Morgane PJ, Jacobs MS, Galaburda A (1985): Conservative features of neocortical evolution in dolphin brain. Brain Behav Evol 26:176-184.
57.
Morgane PJ, Jacobs MS, Galaburda A (1986a): Evolutionary aspects of cortical organization in the dolphin brain; in Harrison RJ, Bryden M (eds): Research on Dolphins. Oxford, Oxford University Press, pp 71-98.
58.
Morgane PJ, Jacobs MS, Galaburda A (1986b): Evolutionary morphology of the dolphin brain; in Schusterman R, Thomas J, Wood F (eds): Dolphin Cognition and Behavior. A Comparative Approach. Hillsdale, Lawrence Erlbaum Associates, pp 5-29.
59.
Morgane PJ, Jacobs MS, Glezer II (1986c): Ultrastructural features of visual cortex of the dolphin. Soc Neurosci Abstr 12:105.
60.
Morgane PJ, Jacobs MS, McFarland WL (1980): The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus): surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Res Bull 5:1-107.
61.
Mota B, Herculano-Houzel S (2015): Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349:74-77.
62.
Norman Jr, Fraser FC (1948): Giant fishes, whales and dolphins. London, Putnam Press.
63.
Oelschläger HHA (2008): The dolphin brain - a challenge for synthetic neurobiology. Brain Res Bull 75:450-459.
64.
Oelschläger HHA, Haas-Rioth M, Fung C, Ridgway SH, Knauth M (2008): Morphology and evolutionary biology of the dolphin (Delphinus sp.) brain ‒ MR imaging and conventional histology. Brain Behav Evol 71:68-86.
65.
Oelschläger HHA, Oelschläger JS (2002): Brain; in Perrin WF, Würsig B, Thewissen JGM (eds): Encyclopedia of Marine Mammals. San Diego, Academic Press, pp 133-158.
66.
Oelschläger HHA, Oelschläger JS (2009): Brain; in Perrin WF, Würsig B, Thewissen JGM (eds): Encyclopedia of Marine Mammals, ed 2. San Diego, Academic Press, pp 134-149.
67.
Oelschläger HHA, Ridgway SH, Knauth M (2010): Cetacean brain evolution: dwarf sperm whale (Kogia sima) and common dolphin (Delphinus delphis) - an investigation with high-resolution 3D MRI. Brain Behav Evol 75:33-62.
68.
Pilleri G (1964): Morphologie des Gehirns des ‘Southern Right Whale', Eubalaena australis DESMOULINS 1822 (Cetacea, Mysticeti, Balaenidae). Acta Zool (Stockholm) 46:245-272.
69.
Pilleri G (1966a): Morphologie des Gehirns des Seiwals, Balaenoptera borealis Lesson (Cetacea, Mysticeti, Balaenopteridae). J Hirnforsch (Berlin) 8:221-267.
70.
Pilleri G (1966b): Über die Anatomie des Gehirns des Gangesdelphins, Platanista gangetica. Rev Suisse Zool 73:113-118.
71.
Pilleri G (1970a): Wissenschaftliche Expedition des Berner Hirnanatomischen Institutes nach Westpakistan und Assam im Jahre 1969 zur Erforschung des Gangesdelphins (Platanista gangetica). Vierteljahresschr Naturforsch Ges Zürich 115:281-322.
72.
Pilleri G (1970b): Observations on the behaviour of Platanista gangetica in the Indus and Brahmaputra rivers; in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol II, pp 27-60.
73.
Pilleri G (1972): The cerebral anatomy of the Platanistidae (Platanista gangetica, Platanista indi, Pontoporia blainville i, Inia geoffrensis); in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol IV, pp 44-70.
74.
Pilleri G, Gihr M (1970): The central nervous system of the Mysticete and Odontocete whales; in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol II, pp 89-128.
75.
Pilleri G, Gihr M (1971): Zur Systematik der Gattung Platanista (Cetacea). Rev Suisse Zool 78:746-759.
76.
Pilleri G, Kraus C, Gihr M (1971): Physical analysis of the sounds emitted by Platanista indi; in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol III, pp 22-30.
77.
Pilleri G, Zbinden K, Gihr M, Kraus C (1976): Sonar clicks, directionality of the emission field and echolocating behaviour of the Indus dolphin (Platanista indi, Blyth, 1859); in Pilleri G (ed): Investigations on Cetacea. Bern, Pilleri, vol VII, pp 13-43.
78.
Pirlot P, Kamiya T (1975): Comparison of ontogenetic brain growth in marine and coastal dolphins. South Biores Inst 39:507-524.
79.
Preuss TM (1995): The argument from animals to humans in cognitive neuroscience; in Gazzaniga MS (ed): The Cognitive Neurosciences. Cambridge, MIT Press, pp 1227-1241.
80.
Poth C, Fung C, Güntürkün O, Ridgway SH, Oelschläger HHA (2005): Neuron numbers in sensory cortices of five delphinids compared to a physeterid, the pygmy sperm whale. Brain Res Bull 66:357-360.
81.
Rice DW (1990): Marine Mammals of the World. Systematics and Distribution. Lawrence, Society of Marine Mammalogy, Special Publication 4:231.
82.
Ridgway SH (1990): The central nervous system of the bottlenose dolphin; in Leatherwood S, Reeves RR (eds): The Bottlenose Dolphin. New York, Academic Press, pp 69-97.
83.
Ridgway SH, Brownson RH (1984): Relative brain sizes and cortical surface areas in odontocetes. Acta Zool Fenn 172:149-152.
84.
Rockel AJ, Hiorns RW, Powell TPS (1980): The basic uniformity in structure of the neocortex. Brain 103:221-244.
85.
Schmitz C, Hof PR (2005): Design-based stereology in neuroscience. Neuroscience 130:813-831.
86.
Schwerdtfeger WK, Oelschläger HA, Stephan H (1984): Quantitative neuroanatomy of the brain of the La Plata dolphin, Pontoporia blainvillei. Anat Embryol (Berlin) 170:11-19.
87.
Shadmer R, Wise SP (2005): The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. Cambridge, MIT Press, pp 77-90.
88.
Shrestha TK (1995): The Ganges River Dolphin. Kathmandu, Variety Printers, p 242.
89.
Smith BD, Braulik GT (2009): Susu and Bhulan. Platanista gangetica gangetica and P. g. minor; in Perrin WF, Thewissen JGM (eds): Encyclopedia of Marine Mammals, ed 2. San Diego, Academic Press, pp 1135-1139.
90.
Smith PH, Populin LC (2001): Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. J Comp Neurol 436:508-519.
91.
Supin AY, Mukhametov LM, Ladygina TF, Popov VV, Mass AM, Poljakova IG (1978): Electrophysiological Studies of the Dolphin's Brain (in Russian). Moscow, Izdatel'stvo Nauka.
92.
Supin AY, Popov VV, Mass AM (2001): The Sensory Physiology of Aquatic Mammals. London, Kluwer.
93.
Sur M, Leamey CA (2001): Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2:251-262.
94.
Tower DB (1954): Structural and functional organization of mammalian cerebral cortex: the correlation of neurone density with brain size. Cortical neurone density in the fin whale (Balaenoptera physalus L.) with a note on the cortical neurone density in the Indian elephant. J Comp Neurol 101:19-52.
95.
Valverde F (1983): A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus); in Grisolia S, Guerri C, Samson F, Norton S, Reinoso-Suárez F (eds): Ramon y Cajal's Contribution to the Neurosciences. Amsterdam, Elsevier, pp 149-170.
96.
West MJ, Slomianka L, Gundersen HJG (1991): Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482-497.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.