Within afrotherians, sirenians are unusual due to their aquatic lifestyle, large body size and relatively large lissencephalic brain. However, little is known about the neuron type distributions of the cerebral cortex in sirenians within the context of other afrotherians and aquatic mammals. The present study investigated two cortical regions, dorsolateral cortex area 1 (DL1) and cluster cortex area 2 (CL2), in the presumptive primary somatosensory cortex (S1) in Florida manatees (Trichechus manatus latirostris) to characterize cyto- and chemoarchitecture. The mean neuron density for both cortical regions was 35,617 neurons/mm3 and fell within the 95% prediction intervals relative to brain mass based on a reference group of afrotherians and xenarthrans. Densities of inhibitory interneuron subtypes labeled against calcium-binding proteins and neuropeptide Y were relatively low compared to afrotherians and xenarthrans and also formed a small percentage of the overall population of inhibitory interneurons as revealed by GAD67 immunoreactivity. Nonphosphorylated neurofilament protein-immunoreactive (NPNFP-ir) neurons comprised a mean of 60% of neurons in layer V across DL1 and CL2. DL1 contained a higher percentage of NPNFP-ir neurons than CL2, although CL2 had a higher variety of morphological types. The mean percentage of NPNFP-ir neurons in the two regions of the presumptive S1 were low compared to other afrotherians and xenarthrans but were within the 95% prediction intervals relative to brain mass, and their morphologies were comparable to those found in other afrotherians and xenarthrans. Although this specific pattern of neuron types and densities sets the manatee apart from other afrotherians and xenarthrans, the manatee isocortex does not appear to be explicitly adapted for an aquatic habitat. Many of the features that are shared between manatees and cetaceans are also shared with a diverse array of terrestrial mammals and likely represent highly conserved neural features. A comparative study across manatees and dugongs is necessary to determine whether these traits are specific to one or more of the manatee species, or can be generalized to all sirenians.

1.
Aiello LC, Wheeler P (1995): The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36:199-221.
2.
Archibald JD (2003): Timing and biogeography of the eutherian radiation: fossils and molecules compared. Mol Phylogenet Evol 28:350-359.
3.
Asher RJ, Bennett N, Lehmann T (2009): The new framework for understanding placental mammal evolution. Bioessays 31:853-864.
4.
Ashwell KWS, Zhang LL, Marotte LR (2005): Cyto- and chemoarchitecture of the cortex of the tammar wallaby (Macropus eugenii): areal organization. Brain Behav Evol 66:114-136.
5.
Baldauf ZB (2005): SMI-32 parcellates the visual cortical areas of the marmoset. Neurosci Lett 383:109-114.
6.
Bauer GB, Gaspard JC III, Colbert DE, Leach JB, Stamper SA, Mann D, Reep R (2012): Tactile discrimination of textures by Florida manatees (Trichechus manatus latirostris). Mar Mamm Sci 28:E456-E471.
7.
Blümke I, Hof PR, Morrison JH, Celio MR (1990): The distribution of parvalbumin in the visual cortex of Old World monkeys and humans. J Comp Neurol 301:417-432.
8.
Blümke I, Hof PR, Morrison JH, Celio MR (1991): Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy study. Brain Res 554:237-243.
9.
Boddy AM, McGowen MR, Sherwood CC, Grossman LI, Goodman M, Wildman DE (2012): Comparative analysis of encephalization in mammals reveals relaxed constraints on anthropoid primate and cetacean brain scaling. J Evol Biol 25:981-994.
10.
Boire D, Desgent S, Matteau I, Ptito M (2005): Regional analysis of neurofilament protein inmmunoreactivity in the hamster's cortex. J Chem Neuroanat 29:193-208.
11.
Bourne JA, Warner CE, Rosa MGP (2005): Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry. Cereb Cortex 15:740-748.
12.
Bourne JA, Warner CE, Upton DJ (2007): Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 500:832-849.
13.
Budinger E, Heil P, Scheich H (2000): Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. Eur J Neurosci 12:2425-2451.
14.
Buchholtz EA, Booth AC, Webbink KE (2007): Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris; a developmental and evolutionary analysis. Anat Rec 290:624-637.
15.
Butti C, Fordyce RE, Raghanti MA, Gu X, Bonar CJ, Wicinski BA, Wong EW, Roman J, Brake A, Eaves E, Spocter MA, Tang CY, Jacobs B, Sherwood CC, Hof PR (2014): The cerebral cortex of the pygmy hippopotamus, Hexaprotodon liberensis (Cetartiodactyla, Hippopotamidae): MRI, cytoarchitecture, and neuronal morphology. Anat Rec 297:670-700.
16.
Butti C, Janeway CM, Townshend C, Wicinski BA, Reidenberg JS, Ridgway SH, Sherwood CC, Hof PR, Jacobs B (2015): The neocortex of cetartiodactyls. I. A comparative Golgi analysis of neuronal morphology in the bottlenose dolphin (Tursiops truncatus), the minke whale (Balaenoptera acutorostrata), and the humpback whale (Megaptera novaeangliae). Brain Struct Funct 220:3330-3368.
17.
Campbell MJ, Hof PR, Morrison JH (1991): A subpopulation of primate corticocortical neurons is distinguished by somatodendritic distribution of neurofilament protein. Brain Res 539:133-136.
18.
Campbell MJ, Morrison JH (1989): Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191-205.
19.
Celio MR (1986): Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science 231:995-997.
20.
Celio MR (1990): Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35:375-382.
21.
Charvet CJ, Reep RL, Finlay BL (2015): Evolution of cytoarchitectural landscapes in the mammalian isocortex: sirenians (Trichechus manatus) in comparison with other mammals. J Comp Neurol DOI: 10.1002/cne.23864.
22.
Chaudhuri A, Zangenehpour S, Matsubara JA, Cynader MS (1996): Differential expression of neurofilament protein in the visual system of the vervet monkey. Brain Res 709:17-26.
23.
DeFelipe J, Alonso-Nanclares L, Arellano JI (2002): Microstructure of the neocortex: comparative aspects. J Neurocytol 31:299-316.
24.
Dexler H (1912): Das Hirn von Halicore Dugong Erxl. Gegenbauers Morphol Jahrb 45:97-193.
25.
Edinger T (1933): Über Gehirne tertiärer Sirenia Ägyptens und Mitteleuropas sowie der rezenten Seekühe. Abh Bayer Akad Wiss Math-Natw Abt: 5-36.
26.
Edinger T (1939): Two notes on the central nervous system of fossil Sirenia. Bull Fac Sci Fouad I Univ 19:43-58.
27.
Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991): Two genes encode distinct glutamate decarboxylases. Neuron 7:91-100.
28.
Fowler ME, Cubas ZS (2001): Biology, Medicine and Surgery of South American Wild Animals. Ames, Iowa State University Press, pp 547.
29.
Gabbott P, Bacon SJ (1996): Local circuit neurons in the medial prefrontal cortex (areas 24a, b, c, 25 and 32) in the monkey. II. Quantitative areal and laminar distributions. J Comp Neurol 364:609-636.
30.
Gabbott PL, Dickie BG, Vaid RR, Headlam AJ, Bacon SJ (1997): Local-circuit neurones in the medial prefrontal cortex (areas 25, 32 and 24b) in the rat: morphology and quantitative distribution. J Comp Neurol 377:465-499.
31.
Galis F, Metz JAJ (2007): Evolutionary novelties: the making and breaking of pleiotropic constraints. Integr Comp Biol 47:409-419.
32.
Gallivan GJ, Best RC (1980): Metabolism and respiration of the Amazonian manatee (Trichechus inunguis). Physiol Zool 53:245-253.
33.
Gaspard JC, Bauer GB, Reep RL, Dzuik K, Read L, Mann DA (2013): Detection of hydrodynamic stimuli by the Florida manatee (Trichechus manatus latirostris). J Comp Physiol A 199:441-450.
34.
Gleichmann M, Mattson MP (2011): Neuronal calcium homeostasis and dysregulation. Antiox Redox Signal 14:1261-1273.
35.
Glezer II, Hof PR, Leranth C, Morgane PJ (1992a): Morphological and histochemical features of cetacean sensory neocortex: immunocytochemical analysis of pyramidal and non-pyramidal populations of neurons; in Thomas JA, Kastelein RA, Supin AY (eds): Marine Mammal Sensory Systems. New York, Springer, pp 1-38.
36.
Glezer II, Hof PR, Leranth C, Morgane PJ (1993): Calcium-binding protein-containing neuronal populations in mammalian visual cortex: a comparative study in whales, insectivores, bats, rodents, and primates. Cereb Cortex 3:249-272.
37.
Glezer II, Hof PR, Morgane PJ (1992b): Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Res 595:181-188.
38.
Glezer II, Hof PR, Morgane PJ (1998): Comparative analysis of calcium-binding protein-immunoreactive neuronal populations in the auditory and visual systems of the bottlenose dolphin (Tursiops truncatus) and the macaque monkey (Macaca fascicularis). J Chem Neuroanat 15:203-237.
39.
Gonchar Y, Burkhalter A (1997): Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7:347-358.
40.
Goto M, Watanabe A, Karita S, Tokita N, Yamamoto Y, Wakaki Y, Asano S, Oka Y, Furuta M (2008): Nutrient and energy consumption of captive mature dugong (Dugong dugong) consuming eelgrass at the Toba Aquarium. Mar Freshw Behav Physiol 41:169-177.
41.
Hallström S, Kulberg M, Nilsson MA, Janke A (2007): Phylogenomic data analyses provide evidence that Xenarthra and Afrotheria are sister groups. Mol Biol Evol 24:2059- 2068.
42.
Hartman DS (1979): Ecology and Behavior of the Manatee (Trichechus manatus) in Florida. Pittsburgh, American Society of Mammalogists.
43.
Hashikawa T, Rausell E, Molinari M, Jones EG (1991): Parvalbumin and calcium-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res 544:335-341.
44.
Hassiotis M, Paxinos G (2004): Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). I. Areal organization. J Comp Neurol 475:493-517.
45.
Hassiotis M, Paxinos G, Ashwell KWS (2005): Cyto- and chemoarchitecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). II. Laminar and synaptic density. J Comp Neurol 482:94-122.
46.
Haug H (1987): Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126-142.
47.
Hendry SHC, Jones EG (1991): GABA neuronal subpopulations in cat primary auditory cortex: co-localization with calcium-binding proteins. Brain Res 543:45-55.
48.
Hendry SHC, Jones EG, Emson PC, Lowson DEM, Heizmann CW, Streit P (1989): Two classes of cortical GABA neurons defined by differential calcium-binding protein reactivities. Exp Brain Res 76:467-472.
49.
Hendry SHC, Schwark HD, Jones EG, Yan J (1987): Number and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. J Neurosci 7:1503-1519.
50.
Hof PR, Chanis R, Marino L (2005): Cortical complexity in cetacean brains. Anat Rec 287A:1142-1152.
51.
Hof PR, Glezer II, Archin N, Janssen WG, Morgane PJ, Morrison JH (1992): The primary auditory cortex in cetacean and human brain: a comparative analysis of neurofilament protein-containing pyramidal neurons. Neurosci Lett 146:91-95.
52.
Hof PR, Glezer II, Condé F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999): Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16:77-116.
53.
Hof PR, Glezer II, Nimchinsky EA, Erwin JM (2000): Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls. Brain Behav Evol 55:300-310.
54.
Hof PR, Morrison JH (1995): Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161-186.
55.
Hof PR, Nimchinsky EA (1992): Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. Cereb Cortex 2:456-467.
56.
Hof PR, Nimchinsky EA, Morrison JH (1995): Neurochemical phenotype of corticocortical connections in the macaque monkey: quantitative analysis of a subset of neurofilament protein-immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices. J Comp Neurol 362:109-133.
57.
Hof PR, Sherwood CC (2005): Morphomolecular neuronal phenotypes in the neocortex reflect phylogenetic relationships among certain mammalian orders. Anat Rec A Discov Mol Cell Evol Biol 287:1153-1163.
58.
Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH (1996): Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376:112-127.
59.
Hu H, Gan J, Jonas P (2014): Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345:1255263.
60.
Irvine AB (1983): Manatee metabolism and its influence on distribution in Florida. Biol Conserv 25:315-334.
61.
Jacobs B, Harland T, Kennedy D, Schall M, Wicinski B, Butti C, Hof PR, Sherwood CC, Manger PR (2015): The neocortex of cetartiodactyls. II. Neuronal morphology of the visual and motor cortices in the giraffe (Giraffa camelopardalis). Brain Struct Funct 220:2851-2872.
62.
Jacobs B, Lubs J, Hannan M, Anderson K, Butti C, Sherwood CC, Hof PR, Manger PR (2011): Neuronal morphology in the African elephant (Loxodonta africana) neocortex. Brain Struct Funct 215:273-298.
63.
Kann O, Papageorgiou IE, Draughn A (2014): Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 34:1270-1282.
64.
Karbowski J (2009): Thermodynamic constraints on neural dimensions, firing rates, brain temperature and size. J Comput Neurosci 27:415-436.
65.
Kirkcaldie MTK, Dickson TC, King CE, Grasby D, Riederer BM, Vickers JC (2002): Neurofilament triplet proteins are restricted to a subset of neurons in the rat neocortex. J Chem Neuroanat 24:163-171.
66.
Kriegs JO, Churakov G, Kiefmann M, Jordan U, Brosius J, Schmitz J (2006): Retroposed elements as archives for the evolutionary history of placental mammals. PLoS Biol 4:e91.
67.
Krubitzer L, Kaas J (2005): The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444-453.
68.
Lawson SN, Waddell PJ (1991): Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41-63.
69.
Loerzel S, Reep RL (1991): Rindenkerne: unusual neuron aggregates in manatee cerebral cortex. Proc Int Assoc Aquat Anim Med 22:166-171.
70.
Mackay-Sim A, Duvall D, Graves BM (1985): The West Indian Manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol 27:196-194.
71.
Marino L (2007): Cetacean brains: how aquatic are they? Anat Rec 290:694-700.
72.
Marshall CD, Huth GD, Edmonds VM, Halin DL, Reep RL (1998): Prehensile use of perioral bristles during feeding and associated behaviors of the Florida manatee (Trichechus manatus latirostris). Marit Mammal Sci 14:274-289.
73.
Marshall CD, Reep RL (1995): Manatee cerebral cortex: cytoarchitecture of the caudal region in Trichechus manatus latirostris. Brain Behav Evol 45:1-18.
74.
McNairn IS, Fairall N (1984): Metabolic rate and body temperature of adult and juvenile hyrax (Procavia capensis). Comp Biochem Physiol A 79:539-545.
75.
Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodba A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011): Impacts of the Cretaceous terrestrial revolution and KPg extinctin on mammal diversification. Science 334:521-524.
76.
Milner JM, Harris S (1999): Activity patterns and feeding behavior of the tree hyrax, Dendrohyrax arboreus, in the Parc National des Volcans, Rwanda. Afr J Ecol 27:267-280.
77.
Mink JW, Blumenschine RJ, Adams DB (1981): Ratio of central nervous system to body metabolism in vertebrates - its constancy and functional basis. Am J Physiol 241:R203-R212.
78.
Morris JR, Lasek RJ (1982): Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol 92:192-198.
79.
Mota B, Herculano-Houzel S (2012): How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front Neuroanat 6:3.
80.
Mota B, Herculano-Houzel S (2015): Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349:74-77.
81.
Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001a): Molecular phylogenetics and the origins of placental mammals. Nature 409:614-618.
82.
Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b): Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348-2351.
83.
Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W (2007): Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17:413-421.
84.
Neves K, Ferreira FM, Tovar-Moll F, Gravett N, Bennett NC, Kaswera C, Gilissen E, Manger PR, Herculano-Houzel S (2014): Cellular scaling rules for the brain of afrotherians. Front Neuroanat 8:5.
85.
Nikolaev S, Montoya-Burgos JI, Margulies EH; NISC Comparative Sequencing Program; Rougement J, Nyffeler B, Antonarakis SE (2007): Early history of mammals is elucidated with the ENCODE multiple species sequencing data. PLoS Genet 3:e2.
86.
Nimchinsky EA, Hof PR, Young WG, Morrison JH (1996): Neurochemical, morphologic, and laminar characterization of cortical projection neurons in the cingulate motor areas of the macaque monkey. J Comp Neurol 374:136-160.
87.
Nimchinsky EA, Vogt BA, Morrison JH (1997): Neurofilament and calcium-binding proteins in the human cingulate cortex. J Comp Neurol 384:597-620.
88.
Oelschläger HA (1992): Development of the olfactory and terminalis systems in whales and dolphins; in Doty RL, Müller-Schwarze D (ed): Chemical Signals in Vertebrates 6. New York, Springer, pp 141-147.
89.
O'Shea TJ, Reep RL (1990): Encephalization quotients and life-history traits in the Sirenia. J Mammal 71:534-543.
90.
Pillay P, Manger PR (2007): Order-specific quantitative patterns of cortical gyrification. Eur J Neurosci 25:2705-2712.
91.
Pitnick S, Jones KE, Wilkinson GS (2006): Mating system and brain size in bats. Proc R Soc B 273:719-724.
92.
Prasad AB, Allard MW; NISC Comparative Sequencing Program; Green ED (2008): Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25:1795-1808.
93.
Preuss TM, Stepniewska I, Jain N, Kaas JH (1997): Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32. Brain Res 767:148-153.
94.
Pyron RA (2010): A likelihood method for assessing molecular divergence time estimates and the placement of fossil calibrations. Syst Biol 59:185-194.
95.
R Core Team (2013): R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. http://www.R-project.org/.
96.
Reep RL, Johnson JI, Switzer RC, Welker WI (1989): Manatee cerebral cortex: cytoarchitecture of the frontal region in Trichechus manatus latirostris. Brain Behav Evol 34:365-386.
97.
Reep RL, Marshall CD, Stoll ML (2002): Tactile hairs on the postcranial body in Florida manatees: a mammalian lateral line? Brain Behav Evol 59:141-154.
98.
Reep RL, Marshall CD, Stoll ML, Whitaker DM (1998): Distribution and innervation of facial bristles and hairs in the Florida manatee (Trichechus manatus latirostris). Marit Mammal Sci 14:257-273.
99.
Reep RL, O'Shea TJ (1990): Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav Evol 35:185-194.
100.
Reep RL, Stoll ML, Marshall CD, Homer BL, Samuelson DA (2001): Microanatomy of facial vibrissae in the Florida manatee: the basis for specialized sensory function and oripulation. Brain Behav Evol 58:1-14.
101.
Reidenberg JS (2007): Anatomical adaptations of aquatic mammals. Anat Rec 290:507-514.
102.
Rice FR (1995): Comparative aspects of barrel structure and development; in Jones EG, Peters A (ed): Cerebral Cortex: The Barrel Cortex of Rodents. New York, Plenum Press, pp 1-75.
103.
Sarko DK, Reep RL (2007): Somatosensory areas of manatee cerebral cortex: histochemical characterization and functional implications. Brain Behav Evol 69:20-36.
104.
Sarko DK, Reep RL, Mazurkiewicz JE, Rice FL (2007): Adaptations in the structure and innervation of follicle-sinus complexes to an aquatic environment as seen in the Florida manatee (Trichechus manatus latirostris). J Comp Neurol 504:217-237.
105.
Schwaller B, Meyer M, Schiffmann S (2002): ‘New' functions for ‘old' proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241-258.
106.
Sherwood CC, Holloway RL, Erwin JM, Hof PR (2004): Cortical orofacial motor representation in Old World monkeys, great apes, and humans. II. Stereologic analysis of chemoarchitecture. Brain Behav Evol 63:82-106.
107.
Sherwood CC, Raghanti MA, Stimpson CD, Bonar CJ, de Sousa AA, Preuss TM, Hof PR (2007): Scaling of inhibitory interneurons in areas v1 and v2 of anthropoid primates as revealed by calcium-binding protein immunohistochemistry. Brain Behav Evol 69:176-195.
108.
Sherwood CC, Stimpson CD, Butti C, Bonar CJ, Newton AL, Allman JM, Hof PR (2009): Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 213:301-328.
109.
Siegal-Willott JL, Harr K, Hayek L-AC, Scott KC, Gerlach T, Sirois P, Reuter M, Crewz DW, Hill RC (2010): Proximate nutrient analyses of four species of submerged aquatic vegetation consumed by Florida manatee (Trichechus manatus latirostris) compared to romaine lettuce (Lactuca sativa var. longifolia). J Zoo Wildl Med 41:594-602.
110.
Song S, Liu L, Edwards SV, Wu S (2012): Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci USA 109:14942-14947.
111.
Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004): Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430-438.
112.
Striedter GF, Srinivasan S, Monuki ES (2015): Cortical folding: when, where, how, and why? Annu Rev Neurosci 38:291-307.
113.
Swadlow HA (1989): Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: receptive fields and axonal properties. J Neurophysiol 62:288-308.
114.
Tsang YM, Chiong F, Kuznetsov D, Kasarskis E, Geula C (2000): Motor neurons are rich in non-phosphorylated neurofilaments: cross-species comparison and alterations in ALS. Brain Res 861:45-58.
115.
Van der Gucht E, Hof PR, Van Brussel L (2007): Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17:2805-2819.
116.
Van der Gucht E, Vandesande F, Arckens L (2001): Neurofilament protein: a selective marker for the architectonic parcellation of the visual cortex in adult cat brain. J Comp Neurol 441:345-368.
117.
Varela-Lasheras I, Bakker AJ, van der Mije SD, Metz JA, van Alphen J, Galis F (2011): Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees, and homeotic mutations. Evodevo 2:11.
118.
Vizcaíno SF, Loughry WJ (2008): Biology of the Xenarthra. Gainesville, University Press of Florida.
119.
White CR, Blackburn TM, Seymour RS (2009): Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution 63:2658-2667.
120.
White JD (1993): Neuropeptide Y: a central regulator of energy homeostasis. Regul Pept 49:93-107.
121.
Wible JR, Rougier GW, Novacek MJ, Asher RJ (2007): Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:1003-1006.
122.
Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S, Gascuel O, Grossman LI, Romero R, Goodman M (2007): Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104:14395-14400.
123.
Woolsey TA, Van der Loos H (1970): The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205-242.
124.
Woolsey TA, Welker C, Schwartz RH (1975): Comparative anatomical studies of the SmI face cortex with special references to the occurrence of ‘barrels' in layer IV. J Comp Neurol 164:79-94.
125.
Yáñez M, Gil-Longo J, Campos-Toimil M: Calcium binding proteins. Adv Exp Med Biol 740:461-482.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.