Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field.

1.
Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Matz MV (2008): Diversity and evolution of coral fluorescent proteins. PLoS One 3:e2680.
2.
Appleby SJ, Muntz WRA (1979): Occlusable yellow corneas in Tetraodontidae. J Exp Biol 83:249-259.
3.
Archer S, Hope A, Partridge JC (1995): The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc Biol Sci 262:289-295.
4.
Arikawa K, Wakakuwa M, Qiu X, Kurasawa M, Stavenga DG (2005): Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora. J Neurosci 25:5935-5942.
5.
Baddeley A, Turner R (2005): Spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1-42.
6.
Bailes HJ, Davies WL, Trezise AEO, Collin SP (2007): Visual pigments in a living fossil, the Australian lungfish Neoceratodus forsteri. BMC Evol Biol 7:200.
7.
Bailes HJ, Robinson SR, Trezise AEO, Collin SP (2006): Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). J Comp Neurol 494:381-397.
8.
Barbour HR, Archer MA, Hart NS, Thomas N, Dunlop SA, Beazley LD, Shand J (2002): Retinal characteristics of the ornate dragon lizard, Ctenophorus ornatus. J Comp Neurol 450:334-344.
9.
Beamish RJ, Leask KD, Ivanov OA, Balanov AA, Orlov AM, Sinclair B (1999): The ecology, distribution, and abundance of midwater fishes of the Subarctic Pacific gyres. Prog Oceanogr 43:399-442.
10.
Bone RA, Landrum JT, Tarsis SL (1985): Preliminary identification of the human macular pigment. Vision Res 25:1531-1535.
11.
Bowmaker JK (2008): Evolution of vertebrate visual pigments. Vision Res 48:2022-2041.
12.
Bowmaker JK, Hunt DM (2006): Evolution of vertebrate visual pigments. Curr Biol 16:484-489.
13.
Bozzano A, Pankhurst PM, Sabatés A (2007): Early development of eye and retina in lanternfish larvae. Vis Neurosci 24:423-436.
14.
Braga AC, Costa PAS, Nunan GW (2008): First record of the firebrow lanternfish Diaphus adenomus (Myctophiformes: Myctophidae) from the South Atlantic. J Fish Biol 73:296-301.
15.
Cerda-Reverter JM, Haitina T, Schioth HB, Peter RE (2005): Gene structure of the goldfish agouti-signaling protein: a putative role in the dorsal-ventral pigment pattern of fish. Endocrinology 146:1597-1610.
16.
Coimbra JP, Marceliano MLV, Andrade-da-Costa BLS, Yamada ES (2006): The retina of tyrant flycatchers: topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty margined flycatcher Myiozetetes cayanensis (Aves: Tyrannidae). Brain Behav Evol 68:15-25.
17.
Collin SP, Hart NS, Shand J, Potter IC (2003): Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis). Vis Neurosci 20:119-130.
18.
Crescitelli F (1990): Adaptations of visual pigments to the photic environment of the deep sea. J Exp Zool 256:66-75.
19.
Davies WL, Collin SP, Hunt DM (2012): Molecular ecology and adaptation of visual photopigments in craniates. Mol Ecol 21:3121-3158.
20.
Davies WL, Cowing JA, Bowmaker JK, Carvalho LS, Gower DJ, Hunt DM (2009): Shedding light on serpent sight: the visual pigments of henophidian snakes. J Neurosci 29:7519-7525.
21.
Davis MP, Holcroft NI, Wiley EO, Sparks JS, Smith WL (2014): Species-specific bioluminescence facilitates speciation in the deep sea. Mar Biol 161:1139-1148.
22.
de Busserolles F, Fitzpatrick JL, Marshall NJ, Collin SP (2014a): The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae). PLoS One 9:e99957.
23.
de Busserolles F, Fitzpatrick JL, Paxton JR, Marshall NJ, Collin SP (2013): Eye-size variability in deep-sea lanternfishes (Myctophidae): an ecological and phylogenetic study. PLoS One 8:e58519.
24.
de Busserolles F, Marshall NJ, Collin SP (2014b): The eyes of lanternfishes (Myctophidae, teleostei): novel ocular specializations for vision in dim light. J Comp Neurol 522:1618-1640.
25.
Douglas RH, Hunt DM, Bowmaker JK (2003): Spectral sensitivity tuning in the deep-sea; in Collin SP, Marshall J (eds): Sensory Processing in Aquatic Environments. Berlin, Springer, pp 323-342.
26.
Douglas RH, Partridge JC (1997): On the visual pigments of deep-sea fish. J Fish Biol 50:68-85.
27.
Douglas RH, Thorpe A (1992): Short-wave absorbing pigments in the ocular lenses of deep-sea teleosts. J Mar Biol Assoc UK 72:93-112.
28.
Flynn AJ, Paxton JR (2012): Spawning aggregation of the lanternfish Diaphus danae (family Myctophidae) in the north-western Coral Sea and associations with tuna aggregations. Mar Freshw Res 63:1255-1271.
29.
Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981): Sexual dimorphism in a photoreceptor. Nature 291:241-244.
30.
Gartner JV (1993): Patterns of reproduction in the dominant lanternfish species (Pisces: Myctophidae) of the eastern Gulf of Mexico, with a review of reproduction among tropical-subtropical Myctophidae. Bull Mar Sci 52:721-750.
31.
Garza Gisholt E, Hemmi JM, Hart NS, Collin SP (2014): A comparison of spatial analysis methods for the construction of topographic maps of retinal cell density. PLoS One 9:e93485.
32.
Goldsmith TH, Collins JS, Licht S (1984): The cone oil droplets of avian retinas. Vision Res 24:1661-1671.
33.
Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000): In search of the visual pigment template. Vis Neurosci 17:509-528.
34.
Haddock SHD, Dunn CW, Pugh PR, Schnitzler CE (2005): Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309:263.
35.
Haddock SHD, Moline MA, Case JF (2010): Bioluminescence in the sea. Ann Rev Mar Sci 2:443-493.
36.
Hart NS (2001): The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675-703.
37.
Hart NS (2002): Vision in the peafowl (Aves: Pavo cristatus). J Exp Biol 205:3925-3935.
38.
Hart NS, Coimbra JP, Collin SP, Westhoff G (2012): Photoreceptor types, visual pigments, and topographic specializations in the retinas of hydrophiid sea snakes. J Comp Neurol 520:1246-1261.
39.
Hart NS, Lisney TJ, Marshall NJ, Collin SP (2004): Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol 207:4587-4594.
40.
Hart N, Partridge J, Cuthill I (1998): Visual pigments, oil droplets and cone photoreceptor distribution in the European starling (Sturnus vulgaris). J Exp Biol 201:1433-1446.
41.
Hart NS, Theiss SM, Harahush BK, Collin SP (2011): Microspectrophotometric evidence for cone monochromacy in sharks. Naturwissenschaften 98:193-201.
42.
Hasegawa EI, Sawada K, Abe K, Watanabe K, Uchikawa K, Okazaki K, Toyama M, Douglas RH (2008): The visual pigments of a deep-sea myctophid fish Myctophum nitidulum Garman: an HPLC and spectroscopic description of a non-paired rhodopsin-porphyropsin system. J Fish Biol 72:937-945.
43.
Herring PJ (1983): The spectral characteristics of luminous marine organisms. Proc R Soc Lond B Biol Sci 220:183-217.
44.
Herring PJ (2007): Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J Mar Biol Assoc UK 87:829-842.
45.
Hopkins TL, Gartner JV Jr (1992): Resource-partitioning and predation impact of a low-latitude myctophid community. Mar Biol 114:185-197.
46.
Hornstein EP, O'Carroll DC, Anderson JC, Laughlin SB (2000): Sexual dimorphism matches photoreceptor performance to behavioural requirements. Proc Biol Sci 267:2111-2117.
47.
Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001): The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:3333-3344.
48.
Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmakers JK (1996): Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Res 36:1217-1224.
49.
Hunt DM, Hart NS, Collin SP (2013): Sensory systems; in Trischitta F, Takei Y, Sebert P (eds): Eel Physiology. New York, CRC Press, pp 118-159.
50.
Hunt DM, Jacobs GH, Bowmaker JK (2005): The genetics of primate visual pigments; in Kremers J (ed): The Primate Visual System: A Comparative Approach. Chichester, Wiley.
51.
Ito S, Wakamatsu K (2003): Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523-531.
52.
Johnsen S, Widder EA, Mobley CD (2004): Propagation and perception of bioluminescence: factors affecting counterillumination as a cryptic strategy. Biol Bull 207:1-16.
53.
Karnella C (1987): Family Myctophidae, lanternfishes; in Gibbs RH, Krueger WH (eds): Biology of Midwater Fishes of the Bermuda Ocean Acre. Washington, Smithsonian Institution Press, pp 51-168.
54.
Kenaley CP, DeVaney SC, Fjeran TT (2014): The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae). Evolution 68:996-1013.
55.
Kinzer J, Schulz K (1985): Vertical distribution and feeding patterns of midwater fish in the central equatorial Atlantic. 1. Myctophidae. Mar Biol 85:313-322.
56.
Klovins J, Schiöth HB (2005): Agouti-related proteins (AGRPs) and agouti-signaling peptide (ASIP) in fish and chicken. Ann NY Acad Sci 1040:363-367.
57.
Kozlov AN (1995): A review of the trophic role of mesopelagic fish of the family Myctophidae in the Southern Ocean ecosystem. CCAMLR Science 2:71-77.
58.
Land MF (1984): Crustacea; in Ali MA (ed): Photoreception and Vision in Invertebrates. pp 401-438.
59.
Land MF (1988): The functions of eye and body movements in Labidocera and other copepods. J Exp Biol 140:381-391.
60.
Levine JS, MacNichol Jr EF (1985): Microspectrophotometry of primate photoreceptors: art, artefact and analysis; in Fein A, Levine JS (eds): The Visual System. New York, Liss, pp 73-87.
61.
Liu Y, Kempf VR, Brian Nofsinger J, Weinert EE, Rudnicki M, Wakamatsu K, Ito S, Simon JD (2003): Comparison of the structural and physical properties of human hair eumelanin following enzymatic or acid/base extraction. Pigment Cell Res 16:355-365.
62.
Lythgoe J, Partridge J (1989): Visual pigments and the acquisition of visual information. J Exp Biol 146:1-20.
63.
MacNichol Jr EF (1986): A unifying presentation of photopigment spectra. Vision Res 26:1543-1556.
64.
Mazel CH (2005): Underwater fluorescence photography in the presence of ambient light. Limnol Oceanogr 3:499-510.
65.
Mazel CH, Cronin TW, Caldwell RL, Marshall NJ (2004): Fluorescent enhancement of signaling in a mantis shrimp. Science 303:51.
66.
McGraw KJ (2006): Mechanics of uncommon colors: pterins, porphyrins and psittacofulvins; in Hill GE, McGraw KJ (eds): Bird Coloration: Mechanism and Measurement. Cambridge, Harvard University Press, pp 354-398.
67.
Meyer-Rochow VB, Lau TF (2008): Sexual dimorphism in the compound eye of the moth Operophtera brumata (Lepidoptera, Geometridae). Invertebr Biol 127:201-216.
68.
Morrow JM, Lazic S, Chang BSW (2011): A novel rhodopsin-like gene expressed in zebrafish retina. Vis Neurosci 28:325-335.
69.
Muntz W (1976): On yellow lenses in mesopelagic animals. J Mar Biol Assoc UK 56:963-976.
70.
Muntz WRA (1973): Yellow filters and the absorption of light by the visual pigments of some Amazonian fishes. Vision Res 13:2235-2254.
71.
Pagès F, Madin LP (2010): Siphonophores eat fish larger than their stomachs. Deep Sea Res Part 2 Top Stud Oceanogr 57:2248-2250.
72.
Parry JWL, Bowmaker JK (2000): Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision Res 40:2241-2247.
73.
Partridge JC, Archer SN, Vanoostrum J (1992): Single and multiple visual pigments in deep-sea fishes. J Mar Biol Assoc UK 72:113-130.
74.
Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM (2007): The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J Exp Biol 210:2829-2835.
75.
Sabates A, Bozzano A, Vallvey I (2003): Feeding pattern and the visual light environment in myctophid fish larvae. J Fish Biol 63:1476-1490.
76.
Saitou N, Nei M (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.
77.
Sedmak JJ, Weerasinghe D, Jolly S (1990): Extraction and quantitation of astaxanthin from Phaffia rhodozyma. Biotechnol Tech 4:107-112.
78.
Shine R (1989): Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q Rev Biol 64:419-461.
79.
Shreeve RS, Collins MA, Tarling GA, Main CE, Ward P, Johnston NM (2009): Feeding ecology of myctophid fishes in the northern Scotia Sea. Mar Ecol Prog Ser 386:221-236.
80.
Siebeck UE, Collin SP, Ghoddusi M, Marshall NJ (2003): Occlusable corneas in toadfishes: light transmission, movement and ultrastruture of pigment during light- and dark-adaptation. J Exp Biol 206:2177-2190.
81.
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011): Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.
82.
Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD (2006): Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J Exp Biol 209:3079-3090.
83.
Somiya H (1976): Functional significance of the yellow lens in the eyes of Argyropelecus affinis. Mar Biol 34:93-99.
84.
Somiya H (1982): ‘Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger. Proc R Soc Lond B Biol Sci 215:481-489.
85.
Sparks JS, Schelly RC, Smith WL, Davis MP, Tchernov D, Pieribone VA, Gruber DF (2014): The covert world of fish biofluorescence: a phylogenetically widespread and phenotypically variable phenomenon. PLoS One 9:e83259.
86.
Stone J (1981): The Whole Mount Handbook: A Guide to the Preparation and Analysis of Retinal Whole Mounts. Sydney, Maitland, p 128.
87.
Sutton TT, Hopkins TL (1996): Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: strategies, selectivity and impact of a top mesopelagic predator group. Mar Biol 127:179-192.
88.
Taft EB (1949): Melanin solubility in tissue sections. Nature 164:1133-1134.
89.
Tamura K, Stecher G, Peterson D, Kumar S (2013): MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-2729.
90.
Temple S, Hart NS, Marshall NJ, Collin SP (2010): A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proc Biol Sci 277:2607-2615.
91.
Thorpe A, Douglas RH, Truscott RJW (1993): Spectral transmission and short-wave absorbing pigments in the fish lens. 1. Phylogenetic distribution and identity. Vision Res 33:289-300.
92.
Thorpe A, Truscott RJW, Douglas RH (1992): Kynurenine identified as the short-wave absorbing lens pigment in the deep-sea fish Stylephorus chordatus. Exp Eye Res 55:53-57.
93.
Toomey MB, McGraw KJ (2007): Modified saponification and HPLC methods for analyzing carotenoids from the retina of quail: implications for its use as a nonprimate model species. Invest Ophthalmol Vis Sci 48:3976-3982.
94.
Toomey MB, McGraw KJ (2009): Seasonal, sexual, and quality related variation in retinal carotenoid accumulation in the house finch (Carpodacus mexicanus). Funct Ecol 23:321-329.
95.
Truscott RJW, Carver JA, Thorpe A, Douglas RH (1992): The identification of 3-hydroxykynurenine as the lens pigment in the gourami Trichogaster trichopterus. Exp Eye Res 54:1015-1017.
96.
Turner JR, White EM, Collins MA, Partridge JC, Douglas RH (2009): Vision in lanternfish (Myctophidae): adaptations for viewing bioluminescence in the deep-sea. Deep Sea Res Part 1 Oceanogr Res Pap 56:1003-1017.
97.
Ullmann JFP, Moore BA, Temple SE, Fernandez-Juricic E, Collin SP (2011): The retinal wholemount technique: a window to understanding the brain and behaviour. Brain Behav Evol 79:26-44.
98.
van Heyningen R (1971a): Fluorescent glucoside in the human lens. Nature 230:393-394.
99.
van Heyningen R (1971b): Fluorescent derivatives of 3-hydroxy-L-kynurenine in the lens of man, the baboon, and the grey squirrel. Biochem J 123:30-31.
100.
Van Noord JE, Olson RJ, Redfern JV, Kaufmann RS (2013): Diet and prey selectivity in three surface-migrating myctophids in the eastern tropical Pacific. Ichthyol Res 60:287-290.
101.
Vogt A, D'Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, Ivanchenko S, Nienhaus GU, Wiedenmann J (2008): A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One 3:e3766.
102.
Walls GL (1931): The occurrence of colored lenses in the eyes of snakes and squirrels, and their probable significance. Copeia 1931:125-127.
103.
Walls GL, Judd H (1933): The intra-ocular colour-filters of vertebrates. Br J Ophthalmol 17:641.
104.
Watanabe H, Moku M, Kawaguchi K, Ishimaru K, Ohno A (1999): Diel vertical migration of myctophid fishes (family Myctophidae) in the transitional waters of the western North Pacific. Fish Oceanogr 8:115-127.
105.
Widder EA, Latz MI, Herring PJ, Case JF (1984): Far red bioluminescence from two deep-sea fishes. Science 225:512-514.
106.
Widder EA (2002): Bioluminescence and the pelagic visual environment. Mar Freshw Behav Physiol 35:1-26.
107.
Widder EA (2010): Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704-708.
108.
Yokoyama R, Knox BE, Yokoyama S (1995): Rhodopsin from the fish, Astyanax: role of tyrosine 261 in the red shift. Invest Ophthalmol Vis Sci 36:939-945.
109.
Yokoyama S, Tada T, Zhang H, Britt L (2008): Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci USA 105:13480-13485.
110.
Zeil J (1983): Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in bibionidae (Diptera). J Comp Physiol A 150:379-393.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.