There has been no agreement as to whether the prefrontal cortex is especially enlarged in the human brain. To answer this question, we analyzed the only two datasets that provide information on total prefrontal cortex volume based on cytoarchitectonic criteria. One delineated the prefrontal cortex proper on the basis of cytoarchitectonic criteria; the other used a proxy of the prefrontal cortex based on a cytoarchitectonic delineation of the frontal lobe. To investigate whether all cortical association areas, including the prefrontal cortex, are enlarged in the human brain, we scaled the different areas to a common reference, the primary visual cortex. To investigate whether the prefrontal cortex is more enlarged than other association areas, we scaled it relative to its inputs from and outputs to other nonprimary areas. We carried out separate regression analyses using different data samples as a predictive baseline group: data for monkeys alone informs us on whether great apes are different from monkeys; data for all non-human anthropoids, including great apes, informs us on whether humans are different from all other primates. The analyses show that the value for the human prefrontal cortex is greater than expected, and that this is true even when data for the great apes are included in the analysis. They also show that the chimpanzee prefrontal cortex is greater than expected for a monkey with a similar sized cortex. We discuss possible functional consequences.

1.
Avants BB, Schoenemann PT, Gee JC (2006): Lagrangian frame diffeomorphic image registration: morphometric comparison of human and chimpanzee cortex. Med Image Anal 10:397-412.
[PubMed]
2.
Bailey P, von Bonin G (1951): The Isocortex of Man. Urbana, University of Illinois Press.
3.
Bailey P, von Bonin G, McCullogh WS (1950): The Isocortex of the Chimpanzee. Urbana, University of Illinois Press.
4.
Barton RA, Harvey PH (2000): Mosaic evolution of brain structure in mammals. Nature 405:1055-1058.
[PubMed]
5.
Barton RA, Venditti C (2013): Human frontal lobes are not relatively large. Proc Natl Acad Sci USA 110:9001-9006.
[PubMed]
6.
Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA, Lewandowski AH, Zilles K, Semendeferi K, Allman JM, Craig AD, Hof PR, Sherwood CC (2013): A volumetric comparison of the insular cortex and its subregions in primates. J Hum Evol 64:263-279.
[PubMed]
7.
Bianchi S, Stimpson CD, Bauernfeind AL, Schapiro SJ, Baze WB, McArthur MJ, Bronson E, Hopkins WD, Semendeferi K, Jacobs B, Hof PR, Sherwood CC (2013): Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans. Cereb Cortex 23:2429-2436.
[PubMed]
8.
Brodmann K (1913): Neue Forchungsergebnisse der Grosshirnrindeanatomische mit besonderer Berucksichtung anthropologischer Fragen. Gesselch Deuts Naturf Artze 85:200-240.
9.
Bush EC, Allman JM (2004): Three-dimensional structure and evolution of primate primary visual cortex. Anat Rec A Discov Mol Cell Evol Biol 281:1088-1094.
[PubMed]
10.
Cowey A, Ellis CM (1969): The cortical representation of the retina in squirrel and rhesus monkeys and its relation to visual acuity. Exp Neurol 24:374-385.
[PubMed]
11.
de Sousa AA, Sherwood CC, Mohlberg H, Amunts K, Schleicher A, MacLeod CE, Hof PR, Frahm H, Zilles K (2010): Hominoid visual brain structure volumes and the position of the lunate sulcus. J Hum Evol 58:281-292.
[PubMed]
12.
Deacon RM (1997): The Symbolic Species. London, Allen Lane.
13.
Desimone R, Schein SJ (1987): Visual properties of neurons in area V4 of the macaque: sensitivity to stimulus form. J Neurophysiol 57:835-868.
[PubMed]
14.
Elston GN (2007): Specialization of the neocortical pyramidal cell during primate evolution; in Kaas J, Preuss TM (eds): Evolution of Nervous Systems: A Comprehensive Reference, vol. 4. New York, Elsevier, pp 191-242.
15.
Frahm HD, Stephan H, Baron G (1984): Comparison of brain structure volumes in insectivora and primates. V. Area striata. J Hirnforsch 25:537-557.
[PubMed]
16.
Geyer S (2004): The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174:1-89.
[PubMed]
17.
Glasser MF, Goyal MS, Preuss TM, Raichle ME, van Essen DC (2014): Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage 93:165-175.
[PubMed]
18.
Herculano-Houzel S, Collins CE, Wong P, Kaas JH (2007): Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 104:3562-3567.
[PubMed]
19.
Holloway RL (2002): Brief communication: how much larger is the relative volume of area 10 of the prefrontal cortex in humans? Am J Phys Anthropol 118:399-401.
[PubMed]
20.
Kaas JH (1997): Topographic maps are fundamental to sensory processing. Brain Res Bull 44:107-112.
[PubMed]
21.
Kelly C, Price TD (2004): Comparative methods based on species mean values. Math Biosci 187:135-154.
[PubMed]
22.
Kumar S, Filipski A, Swarna V, Walker A, Hedges SB (2005): Placing confidence limits on the molecular age of the human-chimpanzee divergence. Proc Natl Acad Sci USA 102:18842-18847.
[PubMed]
23.
Lewis DA, Campbell MJ, Morrison JH (1986): An immunohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. J Comp Neurol 248:1-18.
[PubMed]
24.
Mackey S, Petrides M (2010): Quantitative demonstration of comparable architectonic areas within the ventromedial and lateral orbital frontal cortex in the human and the macaque monkey brains. Eur J Neurosci 32:1940-1950.
[PubMed]
25.
Mushiake H, Saito N, Sakamoto K, Itoyama Y, Tanji J (2006): Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50:631-641.
[PubMed]
26.
Orme D, Frecketon R, Thomas G, Petzolt T, Fritz S, Isaac N, Pearse W (2012): Caper: comparative analyses of phylogenetics and evolution in R. http://CRAN.R-project.org/package=caper.
27.
Passingham RE (1973): Anatomical differences between the neocortex of man and other primates. Brain Behav Evol 7:337-359.
[PubMed]
28.
Passingham RE (1975): Changes in the size and organization of the brain in man and his ancestors. Brain Beh Evol 11:73-90.
[PubMed]
29.
Passingham RE (1981): Primate specialization in brain and intelligence. Symp Zool Soc Lond 46:361-368.
30.
Passingham RE (2008): What Is Special About the Human Brain. Oxford, Oxford University Press.
31.
Passingham RE, Wise SP (2012): The Neurobiology of Prefrontal Cortex. Oxford, Oxford University Press.
32.
Petrides M, Pandya DN (1999): Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011-1036.
[PubMed]
33.
Petrides M, Pandya DN (2002): Comparative cytoarchitectonic analysis of the human and macaque ventrolateral prefrontal cortex and corticocortical connection pattern in the monkey. Eur J Neurosci 16:291-310.
[PubMed]
34.
Preuss TM, Goldman-Rakic PS (1991a): Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates. J Comp Neurol 310:507-549.
[PubMed]
35.
Preuss TM, Goldman-Rakic PS (1991b): Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429-474.
[PubMed]
36.
Rao C, Toutenburg H (1999): Linear Models: Least Squares and Alternatives. New York, Springer.
37.
Ribeiro PF, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, Ferretti-Rebustini RE, Leite RE, Filho WJ, Herculano-Houzel S (2013): The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat 7:28.
[PubMed]
38.
Rilling JK, Seligman RA (2002): A quantitative morphometric comparative analysis of the primate temporal lobe. J Hum Evol 42:505-533.
[PubMed]
39.
Roberts AC, Tomic DL, Parkinson CH, Roeling TA, Cutter DJ, Robbins TW, Everitt BJ (2007): Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): an anterograde and retrograde tract-tracing study. J Comp Neurol 502:86-112.
[PubMed]
40.
Rohlf FJ (2001): Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143-2160.
[PubMed]
41.
Schoenemann PT, Sheehan MJ, Glotzer LD (2005): Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci 8:242-252.
[PubMed]
42.
Semendeferi K, Armstrong E, Schleicher A, Zilles K, van Hoesen GW (2001): Prefrontal cortex in humans and apes: a comparative study of area 10. Am J Phys Anthropol 114:224-241.
[PubMed]
43.
Semendeferi K, Damasio H (2000): The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol 38:317-332.
[PubMed]
44.
Semendeferi K, Lu A, Schenker N, Damasio H (2002): Humans and great apes share a large frontal cortex. Nat Neurosci 5:272-276.
[PubMed]
45.
Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, Travis K, Buckwalter J (2011): Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 21:1485-1497.
[PubMed]
46.
Shariff GA (1953): Cell counts in the primate cerebral cortex. J Comp Neurol 98:381-400.
[PubMed]
47.
Sherwood CC, Holloway RL, Semendeferi K, Hof PR (2005): Is prefrontal white matter enlargement a human evolutionary specialization? Nat Neurosci 8:537-538.
[PubMed]
48.
Sherwood CC, Smaers JB (2013): What's the fuss over human frontal lobe evolution? Trends Cogn Sci 17:432-433.
[PubMed]
49.
Shima K, Isoda M, Mushiake H, Tanji J (2007): Categorization of behavioural sequences in the prefrontal cortex. Nature 445:315-318.
[PubMed]
50.
Smaers JB (2013): How humans stand out in frontal lobe scaling. PNAS 110:E3682.
[PubMed]
51.
Smaers JB, Mulvaney PI, Soligo C, Zilles K, Amunts K (2012): Sexual dimorphism and laterality in the evolution of the primate prefrontal cortex. Brain Behav Evol 79:205-212.
[PubMed]
52.
Smaers JB, Schleicher A, Zilles K, Vinicius L (2010): Frontal white matter volume is associated with brain enlargement and higher structural connectivity in anthropoid primates. PLoS One 5:e9123.
[PubMed]
53.
Smaers JB, Steele J, Case CR, Amunts K (2013): Laterality and the evolution of the prefronto-cerebellar system in anthropoids. Ann NY Acad Sci 1288:59-69.
[PubMed]
54.
Smaers JB, Steele J, Case CR, Cowper A, Amunts K, Zilles K (2011): Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend. Brain Behav Evol 77:67-78.
[PubMed]
55.
Spocter MA, Hopkins WD, Barks SK, Bianchi S, Hehmeyer AE, Anderson SM, Stimpson CD, Fobbs AJ, Hof PR, Sherwood CC (2012): Neuropil distribution in the cerebral cortex differs between humans and chimpanzees. J Comp Neurol 520:2917-2929.
[PubMed]
56.
Takahara D, Inoue K, Hirata Y, Miyachi S, Nambu A, Takada M, Hoshi E (2012): Multisynaptic projections from the ventrolateral prefrontal cortex to the dorsal premotor cortex in macaques - anatomical substrate for conditional visuomotor behavior. Eur J Neurosci 36:3365-3375.
[PubMed]
57.
Tanaka K (1993): Neuronal mechanisms of object recognition. Science 262:685-688.
[PubMed]
58.
van Essen DC (2005): Corticocortical and thalamocortical information flow in the primate visual system. Prog Brain Res 149:173-185.
[PubMed]
59.
Wang Y, Shima K, Osoda M, Sawamura H, Tanji J (2002): Spatial distribution and density of prefrontal cortical cells projecting to three sectors of the premotor cortex. Neuroreport 13:1341-1344.
[PubMed]
60.
Yamagata T, Nakayama Y, Tanji J, Hoshi E (2012): Distinct information representation and processing for goal-directed behavior in the dorsolateral and ventrolateral prefrontal cortex and the dorsal premotor cortex. J Neurosci 32:12934-12949.
[PubMed]
61.
Zilles K, Amunts K, Smaers JB (2011): Three brain collections for comparative neuroanatomy and neuroimaging. Ann NY Acad Sci 1225(suppl 1):E94-E104.
[PubMed]
You do not currently have access to this content.