Abstract
We examined the chemoarchitecture of layer 4 isocortex and the number of myelinated nerve fibers of selected cranial nerves in the American water shrew (Sorex palustris). This study took advantage of the opportunity to examine juvenile brain tissue, which often reveals the most distinctive cortical modules related to different sensory representations. Flattened cortical sections were processed for the metabolic enzyme cytochrome oxidase, revealing a number of modules and septa. Subdivisions related to sensory representations were tentatively identified by performing microelectrode recordings in a single adult shrew in this study, combined with microelectrode recordings and anatomical findings from a previous investigation. Taken together, these results suggest that characteristic chemoarchitectonic borders in the shrew neocortex can be used to delineate and quantify cortical areas. The most obvious subdivisions in the water shrew include a relatively small primary visual cortex which responded to visual stimuli, a larger representation of vibrissae in the primary somatosensory cortex, and a prominent representation of oral structures apparent in the more rostral-lateral cortex. A presumptive auditory area was located in the far caudal cortex. These findings for the cortex are consistent with counts from optic, auditory and trigeminal nerves, suggesting that somatosensory inputs dominate the shrew’s senses whereas visual and auditory inputs play a small role in navigation and in finding prey. More generally, we find that shrews share unusual features of cortical organization with moles, supporting their close taxonomic relationship.