Understanding how the human cerebral cortex evolved to its present complex state is a fascinating topic for neuroscience, genetics, bioinformatics and comparative biology. To gain further insights into the origins of the mammalian neocortex and to understand how the cortex evolved to be able to serve more complex cognitive functions, we study the development of various extant species. Our aim is to correlate cortical cell numbers and neuronal cell types with the elaboration of cortical progenitor populations and their modes of proliferation in different species. There are several progenitors, i.e. the ventricular radial glia, the subventricular intermediate progenitors and subventricular (outer) radial glia types, but the contribution of each to cortical layers and cell types through specific lineages is not fully understood. Recent comparisons of the proportions of these progenitors in various species during embryonic neurogenesis have revealed the elaboration and cytoarchitectonic compartmentalization of the germinal zone, with alterations in the proportions of various types that can be included among the intermediate progenitors. Across species, larger and more diverse intermediate progenitor populations correlate with brain size and cortical cell diversity. Understanding the molecular and cellular interactions regulating the divisions of these intermediate progenitors not only has implications for cortical evolution but also relates to stem cell biology and illuminates the pathomechanisms of several cortical developmental disorders.

1.
Abdel-Mannan O, Cheung AF, Molnár Z (2008): Evolution of cortical neurogenesis. Brain Res Bull 75:398–404.
2.
Abellan A, Menuet A, Dehay C, Medina L, Rétaux S (2010): Differential expression of LIM-homeodomain factors in Cajal-Retzius cells of primates, rodents, and birds. Cereb Cortex 20:1788–1798.
3.
Acámpora D, Simeone A (1999): The TINS lecture: understanding the roles of Otx1 and Otx2 in the control of brain morphogenesis. Trends Neurosci 22:116–22.
4.
Amadio JP, Walsh CA (2006): Brain evolution and uniqueness in the human genome. Cell 126:1033–1035.
5.
Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997): Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476.
6.
Arnold SJ, Huang GJ, Cheung AF, Era T, Nishikawa S, Bikoff EK, Molnár Z, Robertson EJ, Groszer M (2008): The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev 22:2479–2484.
7.
Ayala R, Shu T, Tsai LH (2007): Trekking across the brain: the journey of neuronal migration. Cell 128:29–43.
8.
Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A, Asermouh A, Attié-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S (2007): Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet 39:454–456.
9.
Bachy I, Vernier P, Retaux S (2001): The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain. J Neurosci 21:7620–7629.
10.
Bhide PG (1996): Cell cycle kinetics in the embryonic mouse corpus striatum. J Comp Neurol 374(4):506–522.
11.
Bond J, Woods CG (2006): Cytoskeletal genes regulating brain size. Curr Opin Cell Biol 18:95–101.
12.
Borello U, Pierani A (2010): Patterning the cerebral cortex: traveling with morphogens. Curr Opin Genet Dev 20:408–415.
13.
Britanova O, de Juan Romero C, Cheung A, Kwan KY, Schwark M, Gyorgy A, Vogel T, Akopov S, Mitkovski M, Agoston D, Sestan N, Molnár Z, Tarabykin V (2008): Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57:378–392.
14.
Brodmann K (1909): Vergleichende Lokalizationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig, Barth.
15.
Butler AB, Hodos W (2005): Comparative vertebrate neuroanatomy: evolution and adaptation, ed 2. Hoboken, Wiley-Liss.
16.
Butler AB, Molnár Z (2002): Development and evolution of the collopallium in amniotes: a new hypothesis of field homology. Brain Res Bull 57:475–479.
17.
Butler AB, Molnár Z, Manger PR (2002): Apparent absence of claustrum in monotremes: implications for forebrain evolution in amniotes. Brain Behav Evol 60:230–240.
18.
Bystron I, Blakemore C, Rakic P (2008): Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 9:110–122.
19.
Bystron I, Rakic P, Molnár Z, Blakemore C (2006): The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886.
20.
Carney RS, Bystron I, López-Bendito G, Molnár Z (2007): Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human. Brain Struct Funct 212:37–54.
21.
Charvet CJ, Owerkowicz T, Striedter GF (2009): Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones. Brain Behav Evol 73:285–294.
22.
Cheung AF, Kondo S, Abdel-Mannan O, Chodroff RA, Sirey TM, Bluy LE, Webber N, DeProto J, Karlen SJ, Krubitzer L, Stolp HB, Saunders NR, Molnár Z (2010): The subventricular zone is the developmental milestone of a 6-layered neocortex: comparisons in metatherian and eutherian mammals. Cereb Cortex 20:1071–1081.
23.
Cheung AF, Pollen AA, Tavare A, DeProto J, Molnár Z (2007): Comparative aspects of cortical neurogenesis in vertebrates. J Anat 211:164–176.
24.
Chodroff RA, Goodstadt L, Sirey TM, Oliver PL, Davies KE, Green ED, Molnár Z, Ponting CP (2010): Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol 11: R72.
25.
Clowry G, Molnár Z, Rakic P (2010): Renewed focus on the developing human neocortex. J Anat 217:276–288.
26.
Cobos I, Puelles L, Martinez S (2001): The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Dev Biol 239:30–45.
27.
de Carlos JA, López-Mascaraque L, Valverde F (1996): Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156.
28.
Dehay C, Giroud P, Berland M, Killackey H, Kennedy H (1996): Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J Comp Neurol 367:70–89.
29.
Dehay C, Kennedy H (2007): Cell-cycle control and cortical development. Nat Rev Neurosci 8:438–50.
30.
Dehay C, Savatier P, Cortay V, Kennedy H (2001): Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons. J Neurosci 21:201–214.
31.
Edgar JM, Price DJ (2001): Radial migration in the cerebral cortex is enhanced by signals from thalamus. Eur J Neurosci 13:1745–1754.
32.
Fernandez AS, Pieau C, Repérant J, Boncinelli E, Wassef M (1998): Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111.
33.
Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010): OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699.
34.
Fish JL, Dehay C, Kennedy H, Huttner WB (2008): Making bigger brains – the evolution of neural-progenitor-cell division. J Cell Sci 121:2783–2793.
35.
Francis F, Meyer G, Fallet-Bianco C, Moreno S, Kappeler C, Socorro AC, Tuy FP, Beldjord C, Chelly J (2006): Human disorders of cortical development: from past to present. Eur J Neurosci 23:877–893.
36.
Garcia-Moreno F, Vasistha NA, Trevia N, Bourne J, Molnár Z (2011): Compartmentalisation of cerebral cortical germinal zones in a lissencephalic primate and gyrencephalic rodent. Abstract for Cortical Development Conference 2011, Chania, Crete.
37.
Gilbert CD, Wiesel TN (1979): Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–125.
38.
Goffinet AM, Bar I, Bernier B, Trujillo C, Raynaud A, Meyer G (1999): Reelin expression during embryonic brain development in lacertilian lizards. J Comp Neurol 414:533–550.
39.
Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H (2001): Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294:2186–2189.
40.
Guillemot F, Molnár Z, Tarabykin V, Stoykova A (2006): Molecular mechanisms of cortical differentiation. Eur J Neurosci 23:857–868.
41.
Hansen DV, Lui JH, Parker PR, Kriegstein AR (2010): Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561.
42.
Haubensak W, Attardo A, Denk W, Huttner WB (2004): Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201.
43.
Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008): The basic uniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598.
44.
Hevner RF (2006): From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol 33:33–50.
45.
Hevner RF, Hodge RD, Daza RA, Englund C (2006): Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55:223–233.
46.
Javaherian A, Kriegstein A (2009): A stem cell niche for intermediate progenitor cells of the embryonic cortex. Cereb Cortex 2009;19 (suppl 1):i70–i77.
47.
Jones EG (2000): Microcolumns in the cerebral cortex. Proc Natl Acad Sci USA 2000;97:5019–5021.
48.
Jones L, López-Bendito G, Gruss P, Stoykova A, Molnár Z (2002): Pax6 is required for the normal development of the forebrain axonal connections. Development 129:5041–5052.
49.
Karten HJ (1991): Homology and evolutionary origins of the ‘neocortex’. Brain Behav Evol 38:264–272.
50.
Karten HJ (1997): Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Natl Acad Sci USA 94:2800–2804.
51.
Karten HJ, Hodos W, Nauta WJ, Revzin AM (1973): Neural connections of the ‘visual wulst’ of the avian telencephalon: experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–278.
52.
Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF (2009): Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex 19:2439–2450.
53.
Kriegstein AR, Connors BW (1986): Cellular physiology of the turtle visual cortex: synaptic properties and intrinsic circuitry. J Neurosci 6:178–191.
54.
Kriegstein A, Noctor S, Martínez-Cerdeño V (2006): Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883–890.
55.
Krubitzer L, Kaas J (2005): The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453.
56.
Lickis T (2011): Development of Directed Early Axon Growth in the Cerebral Neocortex; D.Phil thesis, University of Oxford, Oxford.
57.
Lorente de No R (1949): Cerebral cortex: architecture, intracortical connections, motor projections; in Fulton JF (ed): Physiology of the Nervous System, ed 3. Oxford, Oxford University Press, pp 288–220.
58.
Lukaszewicz A, Cortay V, Giroud P, Berland M, Smart I, Kennedy H, Dehay C (2006): The concerted modulation of proliferation and migration contributes to the specification of the cytoarchitecture and dimensions of cortical areas. Cereb Cortex 16(suppl 1):i26–i34.
59.
Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005): G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364.
60.
Mallamaci A, Iannone R, Briata P, Pintonello L, Mercurio S, Boncinelli E, Corte G (1998): EMX2 protein in the developing mouse brain and olfactory area. Mech Dev 77:165–172.
61.
Manger PR, Slutsky DA, Molnár Z (2002): Visual subdivisions of the dorsal ventricular ridge of the iguana (Iguana iguana) as determined by electrophysiologic mapping. J Comp Neurol 453:226–246.
62.
Marín O, Rubenstein JL (2003): Cell migration in the forebrain. Annu Rev Neurosci 26:441–483.
63.
Martínez-Cerdeño V, Noctor SC, Kriegstein AR (2006): The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16(suppl 1):i152–i161.
64.
Medina L, Abellán A (2009): Development and evolution of the pallium. Semin Cell Dev Biol 20:698–711.
65.
Medina L, Reiner A (2000): Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12.
66.
Métin C, Alvarez C, Moudoux D, Vitalis T, Pieau C, Molnár Z (2007): Conserved pattern of tangential neuronal migration during forebrain development. Development 134:2815–2827.
67.
Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004): Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145.
68.
Molnár Z (2004): Thomas Willis (1621–1675), the founder of clinical neuroscience. Nat Rev Neurosci 5:329–335.
69.
Molnár Z (2010): Evolution of brain development; in Gristwood T (ed): Phenotype Magazine of the Oxford Biochemical Society. Oxford, Michelmas, 2010, issue 7, pp 8–10.
70.
Molnár Z, Butler AB (2002): The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24:530–541.
71.
Molnár Z, Cheung AF (2006): Towards the classification of subpopulations of layer V pyramidal projection neurons. Neurosci Res 55:105–115.
72.
Molnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006a): Comparative aspects of cerebral cortical development. Eur J Neurosci 23:921–934.
73.
Molnár Z, Szele FG, Vercelli A (2009): Forebrain neurogenic compartments and cortical neurogenesis: comparative aspects; in Bonfanti L (ed): Postnatal and Adult Neurogenesis. Trivandrum, Research Signpost, pp 193–213.
74.
Molnár Z, Tavare A, Cheung AF (2006b): The origin of neocortex: lessons from comparative embryology; in Kaas JH, Krubitzer LA (eds): The Evolution of Nervous Systems in Mammals. Elsevier, Oxford, vol 3, pp 13–26.
75.
Molnár Z, Vasistha NA, Garcia-Moreno F (2011): Hanging by the tail: progenitor populations proliferate. Nat Neurosci 14:1–3.
76.
Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007): Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437.
77.
Montiel JF, Wang WZ, Oeschger FM, Hoerder-Suabedissen A, Tung WL, García-Moreno F, Holm IE, Villalón A, Molnár Z (2011): Hypothesis on the dual origin of the mammalian subplate. Front Neuroanat 5:25.
78.
Monyer H, Markram H (2004): Interneuron diversity series: molecular and genetic tools to study GABAergic interneuron diversity and function. Trends Neurosci 27:90–97.
79.
Nelson SB, Sugino K, Hempel CM (2006): The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci 29:339–345.
80.
Nie K, Molnár Z, Szele FG (2010): Proliferation but not migration is associated with blood vessels during development of the rostral migratory stream. Dev Neurosci 32:163–172.
81.
Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR (2004): Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144.
82.
Pannese M, Lupo G, Kablar B, Boncinelli E, Barsacchi G, Vignali R (1998): The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals. Mech Dev 73:73–83.
83.
Parnavelas JG (2000): The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131.
84.
Peters A, Yilmaz E (1993): Neuronal organization in area 17 of cat visual cortex. Cereb Cortex 3:49–68.
85.
Pontious A, Kowalczyk T, Englund C, Hevner RF (2008): Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30:24–32.
86.
Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000): Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438.
87.
Puelles L, Kuwana E, Puelles E, Rubenstein JL (1999): Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur J Morphol 37:139–50.
88.
Puelles L, Rubenstein JL (1993): Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci 16(11):472–9.
89.
Puzzolo E, Mallamaci A (2010): Cortico-cerebral histogenesis in the opossum Monodelphis domestica: generation of a hexalaminar neocortex in the absence of a basal proliferative compartment. Neural Dev 19:8.
90.
Rakic P (1995): A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388.
91.
Rakic P (2009): Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735.
92.
Ramón y Cajal S (1909): Histologie du Systeme Nerveux de l’Homme et des Vertébrés (translated by L. Azoulay). Madrid, Instituto Ramón y Cajal de CSIC, 1952–1955.
93.
Reillo I, de Juan Romero C, García-Cabezas MA, Borrell V (2011): A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex 2010, E-pub ahead of print.
94.
Reiner A (1991): A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex. Brain Behav Evol 38:53–91.
95.
Reiner A (1993): Neurotransmitter organization and connections of turtle cortex: implications for the evolution of mammalian isocortex. Comp Biochem Physiol Comp Physiol 104:735–748.
96.
Reynolds ML, Cavanagh ME, Dziegielewska KM, Hinds LA, Saunders NR, Tyndale-Biscoe CH (1985): Postnatal development of the telencephalon of the tammar wallaby (Macropus eugenii): an accessible model of neocortical differentiation. Anat Embryol (Berl) 173:81–94.
97.
Sessa A, Mao CA, Colasante G, Nini A, Klein WH, Broccoli V (2010): Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev 24:1816–1826.
98.
Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008): Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60:56–69.
99.
Shepherd GM (1988): Studies of development and plasticity in the olfactory sensory neuron. J Physiol (Paris) 83:240–245.
100.
Shepherd G, Grillner S (2010): Handbook of Brain Microcircuits. New York, Oxford University Press, pp 544.
101.
Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992): Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–90.
102.
Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002): Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:375–3.
103.
Sottocornola R, Royer C, Vives V, Tordella L, Zhong S, Wang Y, Ratnayaka I, Shipman M, Cheung A, Gaston-Massuet C, Ferretti P, Molnár Z, Lu X (2010): ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell 19:126–137.
104.
Stolp HB, Dziegielewska KM, Saunders NR, Anthony DC, Molnár Z (2011): Reduced ventricular proliferation in the foetal cortex following maternal inflammation in mouse. Mol Psychiatry, submitted.
105.
Striedter GF (2005): Principles of Brain Evolution. Sunderland, Sinauer Associates, pp 436.
106.
Striedter GF, Charvet CJ (2009): Telencephalon enlargement by the convergent evolution of expanded subventricular zones. Biol Lett 5:134–137.
107.
Stubbs D, DeProto J, Nie K, Englund C, Mahmud I, Hevner R, Molnár Z (2009): Neurovascular congruence during cerebral cortical development. Cereb Cortex 19(suppl 1):i32–i41.
108.
Tamamaki N, Fujimori KE, Takauji R (1997): Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323.
109.
Tarabykin V, Stoykova A, Usman N, Gruss P (2001): Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development 128:1983–1993.
110.
Teissier A, Griveau A, Vigier L, Piolot T, Borello U, Pierani A (2010): A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J Neurosci 30:10563–10574.
111.
Thomson AM, Bannister AP (2003): Interlaminar connections in the neocortex. Cereb Cortex 13:5–14.
112.
Toyama K, Matsunami K, Ono T, Tokashiki S (1974): An intracellular study of neuronal organization in the visual cortex. Exp Brain Res 21:45–66.
113.
Tuorto F, Alifragis P, Failla V, Parnavelas JG, Gulisano M (2003): Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick. Eur J Neurosci 18:3388–3393.
114.
von Economo C, Koskinas GN (2008): Atlas of the Cytoarchitectonics of the Adult Human Cerebral Cortex (translated, revised and edited by L.C. Triarhou). Basel, Karger, p 946.
115.
Walsh C, Cepko CL (1993): Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362:632–635.
116.
Wang WZ, Oeschger FM, Lee S, Molnár Z (2009): High quality RNA from multiple brain regions simultaneously acquired by laser capture microdissection. BMC Mol Biol 10:69.
117.
Wang WZ, Oeschger FM, Montiel JF, García-Moreno F, Hoerder-Suabedissen A, Krubitzer L, Ek CJ, Saunders N, Reim K, Villalón A, Molnár Z (2011): Comparative aspects of subplate zone studied with gene expression in sauropsids and mammals. Cerebral Cortex, E-pub ahead of print.
118.
Wang Y, Brzozowska-Prechtl A, Karten HJ (2010): Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci USA 107:12676–12681.
119.
Willis T (1664): Cerebri Anatome.
120.
Wu SX, Goebbels S, Nakamura K, Nakamura K, Kometani K, Minato N, Kaneko T, Nave KA, Tamamaki N (2005): Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci USA 102:17172–17177.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.