The fossil record indicates that early mammals had small brains with proportionately little neocortex. Here we consider what is known about the organization of the neocortex in species with the least expanded neocortex from 6 major clades of the mammalian radiation. Common features of the neocortex across these clades include primary and secondary sensory areas, retrosplenial and cingulate cortex, and frontal cortex. Overall, early mammals likely had a core of 15–20 cortical areas that have been retained in most present-day mammals.

1.
Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D, Novacek MJ (2005): Stem Lagomorpha and the antiquity of Glires. Science 307:1091–1094.
2.
Avzevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho WJ, Lent R, Herculano-Houzel S (2009): Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541.
3.
Baron G (2007): Encephalization: comparative studies of brain size and structure volume in mammals; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. London, Elsevier, vol 3: Mammals, pp 125–135.
4.
Batzri-Izraeli R, Kelly JB, Glendenning KK, Masterton RB, Wollberg Z (1990): Auditory cortex of the long-eared hedgehog (Hemiechinus auritus). Brain Behav Evol 36:237–248.
5.
Beck PD, Pospichal MW, Kaas JH (1996): Topography, architecture, and connections of somatosensory cortex in opossums: evidence for five somatosensory areas. J Comp Neurol 366:109–133.
6.
Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007): The delayed rise of present-day mammals. Nature 446:507–512.
7.
Brodmann K (1909): Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig, Barth.
8.
Bruce LL (2007): Evolution of the nervous system in reptiles; in Kaas JH, Bullock TH (eds): Evolution of Nervous Systems. London, Elsevier, vol 2: Non-Mammalian Vertebrates, pp 125–156.
9.
Burwell RD, Witter MP, Amaral DG (1995): The perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparisons with findings from the monkey brain. Hippocampus 5:390–408.
10.
Butler AB, Hodos W (2005): Comparative Vertebrate Neuroanatomy: Evolution and Adaptation, ed 2. Hoboken, Wiley.
11.
Campi KL, Krubitzer L (2010): Comparative studies of diurnal and nocturnal rodents: differences in lifestyle result in alterations in cortical field size and number. J Comp Neurol 518:4491–4512.
12.
Catania KC (2000): Cortical organization in moles: evidence of new areas and a specialized S2. Somatosens Mot Res 17:335–347.
13.
Catania KC (2005): Evolution of sensory specializations in insectivores. Anat Rec 287A: 1038–1050.
14.
Catania KC, Collins CE, Kaas JH (2000a): Organization of sensory cortex in the East African hedge hog (Atelerix albiventris). J Comp Neurol 421:256–274.
15.
Catania KC, Jain N, Franca JG, Volchan E, Kaas JH (2000b): The organization of somatosensory cortex in the short-tailed opossum (Monodelphis domestica). Somatosens Mot Res 17:39–51.
16.
Catania KC, Kaas JH (1997): The organization of somatosensory cortex and distribution of corticospinal neurons in the eastern mole (Scalopus aquaticus). J Comp Neurol 378:337–353.
17.
Catania KC, Lyon DC, Mock OB, Kaas JH (1999): Cortical organization in shrews: evidence from five species. J Comp Neurol 410:55–72.
18.
Catania KC, Remple MS (2002): Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain. Proc Natl Acad Sci USA 99:5692–5697.
19.
Changizi MA, Shimojo S (2005): Parcellation and area-area connectivity as a function of neocortex size. Brain Behav Evol 66:88–98.
20.
Clark WE (1932): The brain of the insectivora. Prog Zool Soc Lond 102:975–1013.
21.
Colbert EH, Morales M (1991): Evolution of the Vertebrates. New York, Wiley-Liss.
22.
Cunningham CW, Omland KE, Oakley TH (1998): Reconstructing ancestral character states: a critical reappraisal. Trends Ecol Evol 13:361–366.
23.
Dengler-Crish CM, Crish SD, O’Brian MJ, Catania KC (2006): Organization of the somatosensory cortex in elephant shrews (E. Edwardii). Anat Rec 288A:859–866.
24.
Dinopoulos A (1994): Reciprocal connections of the motor neocortical area with the contralateral thalamus in the hedgehog (Erinaceus europaeus) brain. Euro J Neurosci 6:374–380.
25.
Douady CJ, Chatelier PI, Madsen O, de Jong WW, Catzellis F, Springer MS, Stanhope M (2002): Molecular phylogenetic evidence confirming the eulipotyphia concept and in support of hedgehogs as the sister group to shrews. Mol Phylogenet Evol 25:200–209.
26.
Ebner FF (1969): A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann NY Acad Sci 167:241.
27.
Elston GN, Manger PR (1999): The organization and connections of somatosensory cortex in the brush-tailed possum (Trichosurus vulpecula): evidence for multiple, topographically organized and interconnected representations in an Australian marsupial. Somatosens Mot Res 16:312–337.
28.
Felleman DJ, Van Essen DC (1991): Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47.
29.
Finlay B, Brodsky P (2007): Cortical evolution as the expression of a program for disproportionate growth and the proliferation of areas; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. London, Elsevier, vol 3: Mammals, pp 73–96.
30.
Foxworthy WA, Meredith AM (2011): An examination of somatosensory area SIII in ferret cortex. Somatosens Mot Res, E-pub ahead of print.
31.
Frost SB, Milliken GW, Plautz EJ, Masterton RB, Nudo RJ (2000): Somatosensory and motor representations in cerebral cortex of a primitive mammal (Monodelphis domestica): a window into the early evolution of sensorimotor cortex. J Comp Neurol 421:29–51.
32.
Gates GR, Aitkin LM (1982): Auditory cortex in the marsupial possum Trichosurus vulpecula. Hear Res 7:1–11.
33.
Gould HJ (1986): Body surface maps in the somatosensory cortex of rabbit. J Comp Neurol 243:207–233.
34.
Gould SJ (1985): To be a platypus. Natural History 94:10–15.
35.
Hart BL, Hart LA (2007): Evolution of the elephant brains: a paradox between brain size and cognitive behavior; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. London, Elsevier, vol 3: Mammals, pp 491–497.
36.
Hassiotis M, Paxinos G, Ashwell KWS (2004): Cyto- and chemo-architecture of the cerebral cortex of the Australian echidna (Tachyglossus aculeatus). 1. Areal organization. J Comp Neurol 475:493–517.
37.
Hennig W (1966): Phylogenetic Systematics. Urbana, University of Illinois Press.
38.
Herculano-Houzel S (2009): The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31.
39.
Herculano-Houzel S, Mota B, Wong P, Kaas JH (2010): Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc Natl Acad Sci USA 107:19008–19013.
40.
Herrick CJ (1948): The Brain of the Tiger Salamander. Chicago, University of Chicago Press.
41.
Homman-Ludiye J, Manger PR, Bourne JA (2010): Immunohistochemical parcellation of the ferret (Mustela putorius) visual cortex reveals substantial homology with the cat (Felis catus). J Comp Neurol 518:4439–4462.
42.
Huffman KJ, Nelson J, Clarey J, Krubitzer L (1999): The organization of somatosensory cortex in three species of marsupials: neural correlates of morphological specializations. J Comp Neurol 403:5–32.
43.
Jerison HJ (1973): Evolution of the Brain and Intelligence. New York, Academic Press.
44.
Jerison HJ (2007): What fossils tell us about the evolution of the neocortex; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. London, Elsevier, vol 3: Mammals, pp 1–12.
45.
Johnson JI (1990): Comparative development of somatic sensory cortex; in Jones EG, Peters A (eds): Cerebral Cortex. New York, Plenum Press, vol 8B, pp 335–449.
46.
Kaas JH (2002): Convergences in the modular and areal organization of the forebrain of mammals: implications for the reconstruction of forebrain evolution. Brain Behav Evol 59:262–272.
47.
Kaas JH (2005): From mice to men: the evolution of the large, complex human brain. J Biosci 30:155–165.
48.
Kaas JH (2006): Evolution of the neocortex. Curr Biol 16:910–914.
49.
Kaas JH (2007a): Reconstructing the organization of the forebrain of the first mammals; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. London, Elsevier, vol 3: Mammals, pp 27–48.
50.
Kaas JH (2007b): The evolution of sensory and motor systems in primates; in Kaas JH, Preuss TM (eds): Evolution of Nervous Systems. London, Elsevier, vol 4: Primates, pp 35–57.
51.
Kaas JH (2009): Cerebral fissure patterns; in Squire LR (ed): Encyclopedia of Neuroscience. San Diego, Elsevier, pp 793–800.
52.
Kaas JH (2011): The evolution of auditory cortex: the core areas; in Winer JA, Schreiner CE (eds): The Auditory Cortex. New York, Springer, pp 407–427.
53.
Kaas JH, Hackett TA (2008): The functional neuroanatomy of the auditory cortex; in Dallos P, Oertel D (eds): The Senses: A Comprehensive Reference. London, Elsevier, vol 3: Audition, pp 765–780.
54.
Kaas JH, Hall WC, Diamond IT (1970): Cortical visual area I and II in the hedgehog: relation between evoked potential maps and architectonic subdivisions. J Neurophysiol 33:595–615.
55.
Kaas JH, Preuss TM (1993): Archontan affinities as reflected in the visual system; in Szalay F, Novacek M, McKenna M (eds): Mammalian Phylogeny. New York, Springer, pp 115–128.
56.
Kaas JH, Preuss TM (2008): Human brain evolution; in Squire LR (ed): Fundamental Neuroscience. San Diego, Elsevier, pp 1027–1035.
57.
Katz DB, Nicolelis MA, Simon SA (2002): Gustatory processing is dynamic and distributed. Curr Opin Neurobiol 12:448–454.
58.
Kemp TS (2005): The Origin and Evolution of Mammals. Oxford, Oxford University Press.
59.
Kemp TS (2009): The endocranial cavity of a nonmammalian eucynodont (Chiniquodon theotenicus) and its implications for the origin of the mammalian brain. J Vertebr Paleontol 29:1188–1198.
60.
Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004): Mammals from the Age of Dinosaurs. New York, Columbia University Press.
61.
Krubitzer LA, Campi K (2009): Neocortical organization in monotremes; in Squire LR (ed): Encyclopedia of Neuroscience. Oxford, Elsevier, pp 51–59.
62.
Krubitzer LA, Campi KL, Cooke, DF (2011): All rodents are not the same: a modern synthesis of cortical organization. Brain Behav Evol 78:51–93.
63.
Krubitzer LA, Kahn DM (2003): Nature versus nurture revisited: an old idea with a new twist. Prog Neurobiol 70:33–52.
64.
Krubitzer L, Künzle H, Kaas JH (1997): Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). J Comp Neurol 379:399–414.
65.
Krubitzer L, Manger P, Pettigrew J, Calford M (1995): Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306.
66.
Künzle H (1998): Thalamic territories innervated by cerebellar nuclear afferents in the hedgehog tenrec, Echinops telfairi. J Comp Neurol 402:313–326.
67.
Künzle H (2009): Tracing thalamo-cortical connections in tenrec a further attempt to characterize poorly differentiated neocortical regions, particularly the motor cortex. Brain Res 1253:35–47.
68.
Lende RA (1963): Cerbreal cortex: a sensorimotor amalgam in the Marsupialia. Science 141:730–732.
69.
Lende RA (1969): A comparative approach to neocortex: localization in monotremes, marsupials and insectivores. Ann NY Acad Sci 167:262–275.
70.
Loughry WJ, Prodöhl PA, McDonough CM, Avise JC (1998): Polyembryony in armadillos. Am Sci 86:274–279.
71.
Lyon DC (2007): The evolution of visual cortex and visual systems; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. London, Elsevier, vol 3: Mammals, pp 267–306.
72.
Lyon DC, Jain N, Kaas JH (1998): Cortical connections of striate and extrastriate visual areas in tree shrews. J Comp Neurol 401:109–128.
73.
Martinich S, Pontes MN, Rocha-Miranda CE (2000): Patterns of corticocortical, corticotectal, and commissural connections in the opossum visual cortex. J Comp Neurol 416:224–244.
74.
Medina L (2007): Do birds and reptiles possess homologues of mammalian visual, somatosensory and motor cortices?; in Kaas JH, Bullock TH (eds): Evolution of Nervous Systems. London, Elsevier, vol 2: Non-Mammalian Vertebrates, pp 163–194.
75.
Meulders M, Gybels J, Bergmans J, Gerebtzoff MA, Goffart M (1966): Sensory projections of somatic, auditory and visual origin to the cerebral cortex of the sloth (Choloepus hoffmanni peters). J Comp Neurol 126:535–546.
76.
Molnár Z, Tavare A, Cheurq AF (2007): The origin of neocortex: lessons from comparative embryology; in Kaas JH, Krubitzer LA (eds): Evolution of Nervous Systems. Oxford, Elsevier, vol 3: Mammals, pp 13–26.
77.
Murphy WJ, Eizirik E, O’Brien SJ, Madesen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001): Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351.
78.
Nilsson MA, Churakov G, Sommer M, Van Tran N, Zemann A, Brosius J, Schmitz J (2010): Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:1–9.
79.
Northcutt RG, Kaas JH (1995): The emergence and evolution of mammalian neocortex. Trends Neurosci 18:373–379.
80.
Nudo RJ, Masterton RB (1990): Descending pathways to the spinal cord. 3. Sites of origin of the corticospinal tract. J Comp Neurol 296:559–583.
81.
Phillips MJ, Bennett TH, Lee MS (2009): Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proc Natl Acad Sci USA 106:17089–17094.
82.
Preuss TM (1995): Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cogn Neurosci 7:1–24.
83.
Radinsky L (1977): Brains of early carnivores. Paleobiology 3:333–349.
84.
Reep RL, Corwin JV, King V (1996): Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents. Exp Brain Res 111:215–232.
85.
Reep RL, Finlay BL, Darlington RB (2007): The limbic system in mammalian brain evolution. Brain Behav Evol 70:57–70.
86.
Remple MS, Henry EC, Catania KC (2003): Organization of somatosensory cortex in the laboratory rat (Rattus norvegicus): evidence for two lateral areas joined at the representation of the teeth. J Comp Neurol 467:105–118.
87.
Riquimaroux H, Gaioni SJ, Suga N (1991): Cortical computational maps control auditory perception. Science 251:565–568.
88.
Rosa MG (1999): Topographic organization of extrastriate areas in the flying fox: implications for the evolution of mammalian visual cortex. J Comp Neurol 411:503–523.
89.
Rosa MG, Krubitzer LA (1999): The evolution of visual cortex: where is V2? Trends Neurosci 22:242–248.
90.
Rosa MG, Krubitzer LA, Molnar Z, Nelson JE (1999): Organization of visual cortex in the northern quoll, Dasyurus hallucatus: evidence for a homologue of the second visual area in marsupials. Eur J Neurosci 11:907–915.
91.
Rowe M (1990): Organization of the cerebral cortex in monotremes and marsupials; in Jones EG, Peters A (eds): Cerebral Cortex: Comparative Structures and Evolution of Cerebral Cortex. New York, Plenum Press, part II, vol 8B, pp 263–334.
92.
Royce JG, Martin GF, Dom RM (1975): Functional localization and cortical architecture in the nine-banded armadillo (Dasypus novemcinctus mexicanus). J Comp Neurol 164:495–522.
93.
Santiago LF, Rocha EG, Freire MA, Dias IA, Lent R, Houzel JC, Picanco-Diniz CW, Pereira A Jr, Franca JG (2007): The organizational variability of the rodent somatosensory cortex. Rev Neurosci 18:283–294.
94.
Saraiva PE, Magalhaes-Castro B (1975): Sensory and motor representation in the cerebral cortex of the three-toed sloth (Bradypus tridactylus). Brain Res 90:181–193.
95.
Sherwood CC, Stimpson CD, Butti C, Bonar CJ, Newton AL, Allman JM, Hof PR (2009): Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struc Funct 213:301–328.
96.
Smith FA, Boyer AG, Brown JH, Costa DP, Dayan T, Ernest SK, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, McCain C, Okie JG, Saarinen JJ, Sibly RM, Stephens PR, Theodor J, Uhen MD (2010): The evolution of maximum body size of terrestrial mammals. Science 330:12216–12219.
97.
Stanhope MJ, Waddell VG, Madsen O, de Jong W, Hedges SB, Cleven GC, Kao D, Springer MS (1998): Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc Natl Acad Sci USA 95:9967–9972.
98.
Striedter GF (1997): The telencephalon of tetrapods in evolution. Brain Behav Evol 49:179–213.
99.
Suga N (1990): Cortical computational maps for auditory imaging. Neurol Netw 3:3–21.
100.
Thompson JM, Woolsey CN, Talbot SA (1950): Visual areas I and II of cerebral cortex of rabbit. J Neurophysiol 13:277–288.
101.
Towns LC, Burton CJ, Kimberly CJ, Fetterman MR (1982): Projections of the dorsal lateral geniculate and lateral posterior nuclei to visual cortex in the rabbit. J Comp Neurol 210:87–98.
102.
Ulinski PS (1984): Thalamic projections to the somatosensory cortex of the echidna, (Tachyglossus aculeatus). J Comp Neurol 229:153–170.
103.
Ulinski PS (2007) Visual cortex of turtles; in Kaas JH, Bullock TH (eds): Evolution of Nervous Systems. London, Elsevier, vol 2: Non-Mammalian Vertebrates, pp 195–203.
104.
Van Essen DC (2007): Cerebral cortical folding patterns in primates: why they vary and what they signify; in Kaas JH, Preuss TM (eds): Evolution of Nervous Systems. London, Elsevier, vol 4: Primates, pp 267–276.
105.
Velenovsky DS, Cetas JS, Price RO, Sinex DG, McMullen NT (2003): Functional subregions in primary auditory cortex defined by thalamocortical terminal arbors: an electrophysiological and anterograde labeling study. J Neurosci 23:308–316.
106.
Wallace MT, Ramachandran R, Stein BE (2004): A revised view of sensory cortical parcellation. Proc Natl Acad Sci USA 101:2167–2772.
107.
Wang Q, Gao E, Burkhalter A (2011): Gateways of ventral and dorsal streams in mouse visual cortex. J Neurosci 31:1905–1918.
108.
Welker WI (1990) Why does cerebral cortex fissure and fold?; in Jones EG, Peters A (eds): Cerebral Cortex. New York, Plenum.
109.
Wildman DE, Uddin M, Opazo JC, Liu G, Lefort V, Guindon S, Gascuel O, Grossman LI, Romero R, Godman M (2007): Genomics, biogeography, and the diversification of placental mammals. Proc Natl Acad Sci USA 104:14395–14400.
110.
Wise SP, Donoghue JP (1986): Motor cortex of rodents; in Jones EG, Peters A (eds): Cerebral Cortex. New York, Plenum, vol 5, pp 243–270.
111.
Wong P, Kaas JH (2008): Architectonic subdivisions of neocortex in the gray squirrel (Sciurus carolinensis). Anat Rec 10:1301–1333.
112.
Wong P, Kaas JH (2009): An architectonic study of the neocortex of the short-tailed opossum (Monodelphis domestica). Brain Behav Evol 73:206–228.
113.
Woodburne MO, Rich TH, Springer MS (2003): The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28:360–385.
114.
Zilles K, Wree A (1995): Cortex: areal and laminar structrure; in Paxinos G (ed): The Rat Nervous System. Sydney, Academic Press, pp 649–685.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.