Observations accruing in recent years imply that the areal patterning and size dimensioning of the mammalian neocortex are influenced by diverse sets of tangentially migrating glutamatergic neurons that invade the cortical plate and, in so doing, modify the properties of the neopallial proliferative compartments. This developmental scenario sheds new light upon the old issue of how the mammalian neocortex evolved its more complex structure from nonmammalian antecedent forms. In reviewing these novelties, I first point out the topological position of the neopallial island as a central component of the pallium in all gnathostomes, surrounded by a ring of prospective allocortical pallial regions and a more distant set of peripheral neighboring forebrain areas. Early patterning arises from the periphery via passive planar signaling. This process probably establishes the pallium field and its basic island plus allocortical ring organization, as well as a rough prepatterning of some regional subareas. Afterwards, patterning and modulated growth are also actively influenced by the convergence of separate streams of tangentially migrating subpial cells (partly peripheral and partly allocortical in origin) which collectively form the Cajal-Retzius neuronal population in layer I. Effects of these cells include the inside-out stratification of the cortical plate and they may also contribute to the evolutionary emergence of the 6-layered neocortical structure. The most recent addition to our knowledge of pallio-pallial migrations is the existence of a subsequent deep tangential migration of ventropallial cells into the neopallial primordium, whose signaling influence upon local progenitors magnifies the cortex population by 20%. These glutamatergic cells dispersedly invade the entire cortex but largely die postnatally. The crucial implications of these data for comparative thinking on mammalian neocortex evolution and interpretation of potential homologs in sauropsids are explored. Finally, a new conjecture regarding a possible role of the hitherto disregarded lateral pallium is advanced.

1.
Abellan A, Menuet A, Dehay C, Medina L, Rétaux S (2010a): Differential expression of LIM-homeodomain factors in Cajal-Retzius cells of primates, rodents, and birds. Cereb Cortex 20:1788–798.
2.
Abellan A, Vernier B, Rétaux S, Medina L (2010b): Similarities and differences in the forebrain expression of Lhx1 and Lhx5 between chicken and mouse: insights for understanding telencephalic development and evolution. J Comp Neurol 518:3512–3528.
3.
Allman JM (1999): Evolving Brains. New York, Scientific American Library.
4.
Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997): Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476.
5.
Anderson S, Mione M, Yun K, Rubenstein JL (1999): Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb Cortex 9:646–654.
6.
Arimatsu Y, Ishida M (1998): Early patterning of the rat cerebral wall for regional organization of a neuronal population expressing latexin. Brain Res Dev Brain Res 106:71–78.
7.
Arimatsu Y, Ishida M (2002): Distinct neuronal populations specified to form corticocortical and corticothalamic projections from layer VI of developing cerebral cortex. Neuroscience 114:1033–1045.
8.
Arimatsu Y, Ishida M, Kaneko T, Ichinose S, Omori A (2003): Organization and development of corticocortical associative neurons expressing the orphan nuclear receptor Nurr1. J Comp Neurol 466:180–196.
9.
Arimatsu Y, Ishida M, Sato M, Kojima M (1999b): Corticocortical associative neurons expressing latexin: specific cortical connectivity formed in vivo and in vitro. Cereb Cortex 9:569–576.
10.
Arimatsu Y, Ishida M, Takiguchi-Hayashi K, Uratani Y (1999c): Cerebral cortical specification by early potential restriction of progenitor cells and later phenotype control of postmitotic neurons. Development 126:629–638.
11.
Arimatsu Y, Kojima M, Ishida M (1999a): Area- and lamina-specific organization of a neuronal subpopulation defined by expression of latexin in the rat cerebral cortex. Neuroscience 88:93–105.
12.
Arimatsu Y, Nihonmatsu I, Hatanaka Y (2009): Localization of latexin-immunoreactive neurons in the adult cat cerebral cortex and claustrum/endopiriform formation. Neurosci 162:1398–1410.
13.
Arimatsu Y, Nihonmatsu I, Hirata K, Takiguchi-Hayashi K (1994): Cogeneration of neurons with a unique molecular phenotype in layers V and VI of widespread lateral neocortical areas in the rat. J Neurosci 14:2020–2031.
14.
Assimacopoulos S, Grove EA, Ragsdale CW (2003): Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J Neurosci 23:6399–6403.
15.
Bai WZ, Ishida M, Arimatsu Y (2004): Chemically defined feedback connections from infragranular layers of sensory association cortices in the rat. Neuroscience 123:257–267.
16.
Bar I, Lambert de Rouvroit C, Goffinet AM (2000): The evolution of cortical development: an hypothesis based on the role of the Reelin signaling pathway. Trends Neurosci 23:633–638.
17.
Bedogni F, Hodge RD, Elsen GE, Nelson BR, Daza RA, Beyer RP, Bammler TK, Rubenstein JL, Hevner RF (2010): Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc Natl Acad Sci USA 107:13129–13134.
18.
Bernier B, Bar I, D’Arcangelo G, Curran T, Goffinet AM (2000): Reelin mRNA expression during embryonic brain development in the chick. J Comp Neurol 422:448–463.
19.
Bernier B, Bar I, Pieau C, Lambert De Rouvroit C, Goffinet AM (1999): Reelin mRNA expression during embryonic brain development in the turtle Emys orbicularis. J Comp Neurol 413:463–479.
20.
Bielle F, Griveau A, Narboux-Nême N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005): Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012.
21.
Borello U, Cobos I, Long JE, McWhirter JR, Murre C, Rubenstein JL (2008): FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Dev 3:17 [erratum (2008) published in Neural Dev 3:31].
22.
Borello U, Pierani A (2010): Patterning the cerebral cortex: traveling with morphogens. Curr Opin Genet Dev 20:408–415.
23.
Brodmann K (1909): Vergleichende Lokalisationslehre des Grosshirnrinde. Leipzig, Barth.
24.
Brox A, Puelles L, Ferreiro B, Medina L (2003): Expression of the genes GAD67 and Distal-less-4 in the forebrain of Xenopus laevis confirms a common pattern in tetrapods. J Comp Neurol 461:370–393.
25.
Bruce LL, Neary TJ (1995): The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46:224–234.
26.
Butler AB (1994): The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Brain Res Rev 19:66–101.
27.
Butler AB, Cotterill RM (2006): Mammalian and avian neuroanatomy and the question of consciousness in birds. Biol Bull 211:106–127.
28.
Butler AB, Manger PR, Lindahl BI, Arhem P (2005): Evolution of the neural basis of consciousness: a bird-mammal comparison. Bioessays 27:923–936.
29.
Butler AB, Molnár Z (2002): Development and evolution of the collopallium in amniotes: a new hypothesis of field homology. Brain Res Bull 57:475–479.
30.
Cabrera-Socorro A, Hernandez-Acosta NC, Gonzalez-Gomez M, Meyer G (2007): Comparative aspects of p73 and Reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human. Brain Res 1132:59–70.
31.
Campbell K (2003): Dorsal-ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol 13:50–56.
32.
Campbell K, Götz M (2002): Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 25:235–238.
33.
Carrera I, Ferreiro-Galve S, Sueiro C, Anadón R, Rodríguez-Moldes I (2008): Tangentially migrating GABAergic cells of subpallial origin invade massively the pallium in developing sharks. Brain Res Bull 75:405–409.
34.
Caviness VS Jr (1982): Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302.
35.
Charvet CJ, Owerkowicz T, Striedter GF (2009): Phylogeny of the telencephalic subventricular zone in sauropsids: evidence for the sequential evolution of pallial and subpallial subventricular zones. Brain Behav Evol 73:285–294.
36.
Chenn A, Walsh CA (2002): Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–369.
37.
Cobos I, Puelles L, Martínez S (2001a): The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas). Dev Biol 239:30–45.
38.
Cobos I, Shimamura K, Rubenstein JL, Martínez S, Puelles L (2001b): Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras. Dev Biol 239:46–67.
39.
Crick F, Koch C (2005): What is the function of the claustrum? Philos Trans R Soc Lond B Biol Sci 360:1271–1279.
40.
Crossley PH, Martin GR (1995): The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121:439–451.
41.
Danesin C, Peres JN, Johansson M, Snowden V, Cording A, Papalopulu N, Houart C (2009): Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. Dev Cell 16:576–587.
42.
D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995): A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.
43.
D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997): Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31.
44.
Elliot Smith G (1919): A preliminary note on the morphology of the corpus striatum and the origin of the neopallium. J Anat 53:271–291.
45.
Faedo A, Tomassy GS, Ruan Y, Teichmann H, Krauss S, Pleasure SJ, Tsai SY, Tsai MJ, Studer M, Rubenstein JL (2008): COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. Cereb Cortex 18:2117–2131.
46.
Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marín O (2007): Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 27:9682–9695.
47.
Frotscher M, Chai X, Bock HH, Haas CA, Förster E, Zhao S (2009): Role of Reelin in the development and maintenance of cortical lamination. J Neural Transm 116:1451–1455.
48.
García-Calero E, Puelles L (2009): Enc1 expression in the chick telencephalon at intermediate and late stages of development. J Comp Neurol 517:564–580.
49.
Garcia-Lopez R, Pombero A, Martinez S (2009): Fate map of the chick embryo neural tube. Dev Growth Differ 51:145–165.
50.
Gaspard N, Bouschet T, Hourez R, Dimidschstein J, Naeije G, van den Ameele J, Espuny-Camacho I, Herpoel A, Pasante L, Schiffmann SN, Gaillard A, Vanderhaeghen P (2008): An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455:351–357.
51.
Giacomantonio CE, Goodhill GJ (2010): A Boolean model of the gene regulatory network underlying mammalian cortical area development. PLoS Comput Biol 6:e1000936.
52.
Goffinet AM, Bar I, Bernier B, Trujillo C, Raynaud A, Meyer G (1999) Reelin expression during embryonic brain development in lacertilian lizards. J Comp Neurol 414:533–550.
53.
Goffinet AM, Daumerie C, Langerwerf B, Pieau C (1986): Neurogenesis in reptilian cortical structures: 3H-thymidine autoradiographic analysis. J Comp Neurol 243:106–116.
54.
Griveau A, Borello U, Causeret F, Tissir F, Boggetto N, Karaz S, Pierani A (2010): A novel role for Dbx1-derived Cajal-Retzius cells in early regionalization of the cerebral cortical neuroepithelium. PLoS Biol 8(7): e1000440.
55.
Grove EA, Tole S, Limon J, Yip L, Ragsdale CW (1998): The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 125:2315–2325.
56.
Guillemot F, Molnár Z, Tarabykin V, Stoykova A (2006): Molecular mechanisms of cortical differentiation. Eur J Neurosci 23:857–868.
57.
Guirado S, Dávila JC (2002): Thalamo-telencephalic connections: new insights on the cortical organization in reptiles. Brain Res Bull 57:451–454.
58.
Hassiotis M, Paxinos G, Ashwell KW (2005): Cyto- and chemoarchitecture of the cerebral cortex of an echidna (Tachyglossus aculeatus). 2. Laminar organization and synaptic density. J Comp Neurol 482:94–122.
59.
Hatanaka Y, Uratani Y, Takiguchi-Hayashi K, Omori A, Sato K, Miyamoto M, Arimatsu Y (1994): Intracortical regionality represented by specific transcription for a novel protein, latexin. Eur J Neurosci 6:973–982.
60.
Heins N, Cremisi F, Malatesta P, Gangemi RM, Corte G, Price J, Goudreau G, Gruss P, Götz M (2001): Emx2 promotes symmetric cell divisions and a multipotential fate in precursors from the cerebral cortex. Mol Cell Neurosci 18:485–502.
61.
Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008): The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598.
62.
Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, Cooper JA, Herz J (1999): Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489.
63.
Holmgren N (1925): Points of view concerning forebrain morphology in higher vertebrates. Acta Zool 6:414–477.
64.
Hoogland PV, Vermeulen-Vanderzee E (1989): Efferent connections of the dorsal cortex of the lizard Gekko gecko studied with Phaseolus vulgaris-leucoagglutinin. J Comp Neurol 285:289–303.
65.
Houart C, Caneparo L, Heisenberg C, Barth K, Take-Uchi M, Wilson S (2002): Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 35:255–265.
66.
Imayoshi I, Shimogori T, Ohtsuka T, Kageyama R (2008): Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 135:2531–2541.
67.
Ina A, Sugiyama M, Konno J, Yoshida S, Ohmomo H, Nogami H, Shutoh F, Hisano S (2007): Cajal-Retzius cells and subplate neurons differentially express vesicular glutamate transporters 1 and 2 during development of mouse cortex. Eur J Neurosci 26:615–623.
68.
Jarvis ED, Güntürkün O, Bruce L, Csillag A, Karten H, Kuenzel W, Medina L, Paxinos G, Perkel DJ, Shimizu T, Striedter G, Wild JM, Ball GF, Dugas-Ford J, Durand SE, Hough GE, Husband S, Kubikova L, Lee DW, Mello CV, Powers A, Siang C, Smulders TV, Wada K, White SA, Yamamoto K, Yu J, Reiner A, Butler AB, Avian Brain Nomenclature Consortium (2005): Avian brains and a new understanding of vertebrate brain evolution. Nat Rev Neurosci 6:151–159.
69.
Jürgens U (2002): Neural pathways underlying vocal control. Neurosci Biobehav Rev 26:235–258.
70.
Kaas JH (2006): Evolution of the neocortex. Curr Biol 16(21):R910–R914.
71.
Kaas JH (2008): The evolution of the complex sensory and motor systems of the human brain. Brain Res Bull 75:384–390.
72.
Karten HJ (1969): The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon; in Petras J (ed): Comparative and Evolutionary Aspects of the Vertebrate Central Nervous System. New York, Annals of the New York Academy of Sciences, vol. 167, pp 146–179.
73.
Karten HJ (1991): Homology and evolutionary origins of the ‘neocortex’. Brain Behav Evol 38:264–272.
74.
Karten HJ (1997): Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proc Natl Acad Sci USA 94:2800–2804.
75.
Kim AS, Anderson SA, Rubenstein JL, Lowenstein DH, Pleasure SJ (2001): Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS. J Neurosci 21:RC132.
76.
Krubitzer L (1998): What can monotremes tell us about brain evolution? Philos Trans R Soc Lond B Biol Sci 353:1127–1146.
77.
Krubitzer L (2009): In search of a unifying theory of complex brain evolution. Ann NY Acad Sci 1156:44–67.
78.
Kuan CY, Elliott EA, Flavell RA, Rakic P (1997): Restrictive clonal allocation in the chimeric mouse brain. Proc Natl Acad Sci USA 94:3374–3379.
79.
Kuhlenbeck H (1927): Vorlesungen über das Zentralnervensystem der Wirbeltiere: eine Einführung in die Gehirnanatomie auf vergleichender Grundlage. Jena, Gustav Fischer.
80.
Künzle H, Radtke-Schuller S (2000): Multiarchitectonic characterization of insular, perirhinal and related regions in a basal mammal, Echinops telfairi. Anat Embryol (Berl) 202:507–522.
81.
Levitt P, Barbe MF, Eagleson KL (1997): Patterning and specification of the cerebral cortex. Annu Rev Neurosci 20:1–24.
82.
Lindsay S, Sarma S, Martínez-de-la-Torre M, Kerwin J, Scott M, Luis Ferran J, Baldock R, Puelles L (2005): Anatomical and gene expression mapping of the ventral pallium in a three-dimensional model of developing human brain. Neuroscience 136:625–632.
83.
Liu Q, Yu L, Gao J, Fu Q, Zhang J, Zhang P, Chen J, Zhao S (2000): Cloning, tissue expression pattern and genomic organization of latexin, a human homologue of rat carboxypeptidase A inhibitor. Mol Biol Rep 27:241–246.
84.
Louvi A, Yoshida M, Grove EA (2007): The derivatives of the Wnt3a lineage in the central nervous system. J Comp Neurol 504:550–569.
85.
Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L, Krauss S (2007): A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 311:223–237.
86.
Mallamaci A, Stoykova A (2006): Gene networks controlling early cerebral cortex arealization. Eur J Neurosci 23:847–856.
87.
Marín O, Rubenstein JL (2003): Cell migration in the forebrain. Annu Rev Neurosci 26:441–483.
88.
Marin-Padilla M (1978): Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152:109–126.
89.
Marin-Padilla M (1998): Cajal-Retzius cell and the development of the neocortex. Trends Neurosci 21:64–71.
90.
Martínez-de-la-Torre M, Pombal MA, Puelles L (2011): Distal-less-like protein distribution in the larval lamprey forebrain. Neuroscience 178:270–284.
91.
Martínez-García F, Martínez-Marcos A, Lanuza E (2002): The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Res Bull 57:463–469.
92.
Martínez-García F, Novejarque A, Lanuza E (2006): Evolution of the amygdala in vertebrates; in Kaas JH (ed): Evolution of Nervous Systems. Oxford, Academic Press, vol 2, pp 255–334.
93.
Maruoka Y, Ohbayashi N, Hoshikawa M, Itoh N, Hogan BL, Furuta Y (1998): Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech Dev 74:175–177.
94.
Medina L, Legaz I, González G, De Castro F, Rubenstein JL, Puelles L (2004) Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J Comp Neurol 474:504–523.
95.
Meléndez-Ferro M, Pérez-Costas E, Villar-Cheda B, Abalo XM, Rodríguez-Muñoz R, Rodicio MC, Anadón R (2002): Ontogeny of gamma-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey. J Comp Neurol 446:360–376.
96.
Meyer G (2010): Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J Anat 217:334–343.
97.
Meyer G, Cabrera Socorro A, Perez Garcia CG, Martinez Millan L, Walker N, Caput D: (2004): Developmental roles of p73 in Cajal-Retzius cells and cortical patterning. J Neurosci 24:9878–9887.
98.
Meyer G, Goffinet AM (1998): Prenatal development of reelin-immunoreactive neurons in the human neocortex. J Comp Neurol 397:29–40.
99.
Meyer G, Goffinet AM, Fairén A (1999): What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cereb Cortex 9:765–775.
100.
Meyer G, Perez-Garcia CG, Abraham H, Caput D (2002): Expression of p73 and Reelin in the developing human cortex. J Neurosci 22:4973–4986.
101.
Meyer G, Wahle P (1999): The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944.
102.
Molnár Z, Butler AB (2002a): The corticostriatal junction: a crucial region for forebrain development and evolution. Bioessays 24:530–541.
103.
Molnár Z, Butler AB (2002b): Neuronal changes during forebrain evolution in amniotes: an evolutionary developmental perspective. Prog Brain Res 136:21–38.
104.
Molnár Z, Métin C, Stoykova A, Tarabykin V, Price DJ, Francis F, Meyer G, Dehay C, Kennedy H (2006): Comparative aspects of cerebral cortical development. Eur J Neurosci 23:921–934.
105.
Moreno N, González A (2007): Evolution of the amygdaloid complex in vertebrates, with special reference to the anamnio-amniotic transition. J Anat 211:151–163.
106.
Nauta WJ, Karten HJ (1970): A general profile of the vertebrate brain, with sidelights on the ancestry of cerebral cortex; in Schmitt FO (ed): The Neurosciences: Second Study Program. New York, Rockefeller University Press, pp 7–26.
107.
Northcutt RG, Kaas JH (1995): The emergence and evolution of mammalian neocortex. Trends Neurosci 18:373–379.
108.
O’Leary DD, Chou SJ, Sahara S (2007): Area patterning of the mammalian cortex. Neuron 56:252–269.
109.
O’Leary DD, Sahara S (2008): Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18:90–100.
110.
Pierani A, Wassef M (2009): Cerebral cortex development: from progenitors patterning to neocortical size during evolution. Dev Growth Differ 51:325–342.
111.
Pinto-Lord MC, Evrard P, Caviness VS Jr (1982): Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain Res 256:379–393.
112.
Polleux F, Dehay C, Kennedy H (1997): The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. J Comp Neurol 385:95–116.
113.
Pombal MA, Megías M, Bardet SM, Puelles L (2009): New and old thoughts on the segmental organization of the forebrain in lampreys. Brain Behav Evol 74:7–19.
114.
Pombal MA, Puelles L (1999): Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. J Comp Neurol 414:391–422.
115.
Pombero A, Martinez S (2009): Telencephalic morphogenesis during the process of neurulation: an experimental study using quail-chick chimeras. J Comp Neurol 512:784–797.
116.
Puelles L (2001): Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philos Trans R Soc Lond B Biol Sci 356:1583–1598.
117.
Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K, Keleher J, Smiga S, Rubenstein JL (2000): Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J Comp Neurol 424:409–438.
118.
Puelles L, Martinez S, Martinez-de-la-Torre M, Rubenstein JL (2004): Gene maps and related histogenetic domains in the forebrain and midbrain; in Paxinos G (ed): The Rat Nervous System, ed 3. San Diego, Elsevier Academic Press, pp 3–25.
119.
Puelles L, Martinez-de-la-Torre M, Paxinos G, Watson C (2007): The Chick Brain in Stereotaxic Coordinates: An Atlas Featuring Neuromeric Subdivisions and Mammalian Homologies. San Diego, Elsevier Academic Press.
120.
Puelles L, Rubenstein JL (2003): Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476.
121.
Rakic P (1988): Specification of cerebral cortical areas. Science 241:170–176.
122.
Rakic P (1995): A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388.
123.
Rakic P (2002): Evolving concepts of cortical radial and areal specification. Prog Brain Res 136:265–280.
124.
Rakic P (2009): Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci 10:724–735.
125.
Rakic P, Ayoub AE, Breunig JJ, Dominguez MH (2009): Decision by division: making cortical maps. Trends Neurosci 32:291–301.
126.
Rash BG, Grove EA (2006): Area and layer patterning in the developing cerebral cortex. Curr Opin Neurobiol 16:25–34.
127.
Rash BG, Grove EA (2007): Patterning the dorsal telencephalon: a role for sonic hedgehog? J Neurosci 27:11595–11603.
128.
Reiner A (2000): A hypothesis as to the organization of cerebral cortex in the common reptile ancestor of modern reptiles and mammals; in Bock GA, Cardew G (eds): Evolutionary Developmental Biology of the Cerebral Cortex. London, Novartis, pp 83–108.
129.
Reiner A, Karten HJ (1985) Comparison of olfactory bulb projections in pigeons and turtles. Brain Behav Evol 27:11–27.
130.
Reiner A, Perkel DJ, Mello CV, Jarvis ED (2004): Songbirds and the revised avian brain nomenclature. Ann NY Acad Sci 1016:77–108.
131.
Reiner A, Yamamoto K, Karten HJ (2005): Organization and evolution of the avian forebrain. Anat Rec A Discov Mol Cell Evol Biol 287:1080–1102.
132.
Sahara S, Kawakami Y, Izpisua Belmonte JC, O’Leary DD (2007): Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2:10.
133.
Sansom SN, Hébert JM, Thammongkol U, Smith J, Nisbet G, Surani MA, McConnell SK, Livesey FJ (2005): Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap. Development 132:3947–3961.
134.
Schepers GWH (1948): Evolution of the Forebrain. Cape Town, Maskew Miller.
135.
Seuntjens E, Nityanandam A, Miquelajauregui A, Debruyn J, Stryjewska A, Goebbels S, Nave KA, Huylebroeck D, Tarabykin V (2009): Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat Neurosci 12:1373–1380.
136.
Shen Q, Wang Y, Dimos JT, Fasano CA, Phoenix TN, Lemischka IR, Ivanova NB, Stifani S, Morrisey EE, Temple S (2006): The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9:743–751.
137.
Shimogori T, Banuchi V, Ng HY, Strauss JB, Grove EA (2004): Embryonic signaling centers expressing BMP, WNT and FGF proteins interact to pattern the cerebral cortex. Development 131:5639–5647.
138.
Shimojo H, Ohtsuka T, Kageyama R (2008): Oscillations in notch signalling regulate maintenance of neural progenitors. Neuron 58:52–64.
139.
Smith-Fernandez AS, Pieau C, Repérant J, Boncinelli E, Wassef M (1998): Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111.
140.
Staudt N, Houart C (2007): The prethalamus is established during gastrulation and influences diencephalic regionalization. PLoS Biol 5:e69.
141.
Storm EE, Garel S, Borello U, Hebert JM, Martinez S, McConnell SK, Martin GR, Rubenstein JL (2006): Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133:1831–1844.
142.
Striedter GF (1997): The telencephalon of tetrapods in evolution. Brain Behav Evol 49:179–213.
143.
Striedter GF, Keefer BP (2000): Cell migration and aggregation in the developing telencephalon: pulse-labeling chick embryos with bromodeoxyuridine. J Neurosci 20:8021–8030.
144.
Striedter GF, Marchant TA, Beydler S (1998): The ‘neostriatum’ develops as part of the lateral pallium in birds. J Neurosci 18:5839–5849.
145.
Stühmer T, Puelles L, Ekker M, Rubenstein JL (2002): Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons. Cereb Cortex 12:75–85.
146.
Subramanian L, Remedios R, Shetty A, Tole S (2009): Signals from the edges: the cortical hem and antihem in telencephalic development. Semin Cell Dev Biol 20:712–718.
147.
Sur M, Rubenstein JL (2005): Patterning and plasticity of the cerebral cortex. Science 310:805–810.
148.
Takiguchi-Hayashi K (2001): In vitro clonal analysis of rat cerebral cortical neurons expressing latexin, a subtype-specific molecular marker of glutamatergic neurons. Brain Res Dev Brain Res 132:87–90.
149.
Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S, Takamatsu M, Hasegawa H, Suzuki-Migishima R, Yokoyama M, Nakanishi S, Tanabe Y (2004): Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24:2286–2295.
150.
Teissier A, Griveau A, Vigier L, Piolot T, Borello U, Pierani A (2010): A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J Neurosci 30:10563–10574.
151.
Tendeng C, Houart C (2006): Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio. Gene Expr Patterns 6:761–771.
152.
ten Donkelaar HJ (1999): Some introductory notes on the organization of the forebrain in tetrapods. Eur J Morphol 37:73–80.
153.
Tissir F, Goffinet AM (2003): Reelin and brain development. Nat Rev Neurosci 4:496–505.
154.
Tissir F, Lambert de Rouvroit C, Goffinet AM (2002): The role of reelin in the development and evolution of the cerebral cortex. Braz J Med Biol Res 35:1473–1484.
155.
Tissir F, Lambert de Rouvroit C, Sire JY, Meyer G, Goffinet AM (2003): Reelin expression during embryonic brain development in Crocodylus niloticus. J Comp Neurol 457:250–262.
156.
Tissir F, Ravni A, Achouri Y, Riethmacher D, Meyer G, Goffinet AM (2009): DeltaNp73 regulates neuronal survival in vivo. Proc Natl Acad Sci USA 106:16871–16876.
157.
Torii M, Hashimoto-Torii K, Levitt P, Rakic P (2009): Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature 461:524–528.
158.
Toyoda R, Assimacopoulos S, Wilcoxon J, Taylor A, Feldman P, Suzuki-Hirano A, Shimogori T, Grove EA (2010): FGF8 acts as a classic diffusible morphogen to pattern the neocortex. Development 137:3439–3448.
159.
Wang Y, Brzozowska-Prechtl A, Karten HJ (2010): Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci USA 107:12676–12681.
160.
Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P, Mason JO, Hill RE, Price DJ (1999): The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb Cortex 9:627–635.
161.
Yamazaki H, Sekiguchi M, Takamatsu M, Tanabe Y, Nakanishi S (2004): Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis. Proc Natl Acad Sci USA 101:14509–14514.
162.
Yoshida M, Assimacopoulos S, Jones KR, Grove EA (2006): Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133:537–545.
163.
Yun K, Potter S, Rubenstein JL (2001): Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128:193–205.
164.
Zecevic N, Rakic P (2001): Development of layer I neurons in the primate cerebral cortex. J Neurosci 21:5607–5619.
165.
Zhou L, Gall D, Qu Y, Prigogine C, Cheron G, Tissir F, Schiffmann SN, Goffinet AM (2010): Maturation of ‘neocortex isole’ in vivo in mice. J Neurosci 30:7928–7939.
166.
Zimmer C, Lee J, Griveau A, Arber S, Pierani A, Garel S, Guillemot F (2010): Role of Fgf8 signalling in the specification of rostral Cajal-Retzius cells. Development 137:293–302.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.