Abstract
Neurogenesis and neuronal replacement in adulthood represent dramatic forms of plasticity that might serve as a substrate for behavioral flexibility. In songbirds, neurons are continually replaced in HVC (used as a proper name), a pre-motor region necessary for the production of learned vocalizations. There are large individual differences in HVC neuron addition. Some of this variation is probably due to individual differences in adult experience; however, it is also possible that heritability or experience early in development constrains the levels of adult neuron addition. As a step toward addressing the latter two possibilities, we explored the extent to which nest of origin predicts rates of HVC neuron addition in adult male zebra finches. One month after injections of [3H]-thymidine to mark dividing cells, neuron addition in HVC was found to co-vary among birds that had been nest mates, even when they were housed in different cages as adults. We also tested whether nest mate co-variation might be due to shared adult auditory experience by measuring neuron addition in nest mate pairs after one member was deafened. There were significant differences in neuron addition between hearing and deaf birds but nest mate relationships persisted. These results suggest that variation in genotype and/or early pre- or postnatal experience can account for a large fraction of adult variation in rates of neuron addition. These results also suggest that a major constraint on neurogenesis and the capacity to adjust rates of neuron addition in response to adult auditory experience is established early in development.