We propose here a novel interpretation of the embryonic origin of cells of diencephalic sensory relay nuclei in teleosts based on our recent studies of gene expression patterns in the medaka (Oryzias latipes) embryonic brain and comparative hodological studies. It has been proposed that the diencephalic sensory relay system in teleosts is unique among vertebrates. Teleost relay nuclei, the preglomerular complex (PG), have been assumed to originate from the basal plate (the posterior tuberculum) of the diencephalon, whereas relay nuclei in mammals are derived from the alar plate (dorsal thalamus) of the diencephalon. Our results using in situ hybridization show, however, that many pax6- or dlx2- positive cells migrate laterally and ventrocaudally from the diencephalic alar plate to the basal plate during development. Massive clusters of the migrated alar cells become localized in the mantle layer lateral to the posterior tubercular neuroepithelium, from which main nuclei of the PG appear to differentiate. We therefore consider most if not all neurons in the PG to be of alar, not basal, origin. Thus, the teleost PG, at least in part, can be regarded as migrated alar nuclei. Developmental and hodological data strongly suggest that the teleost PG is homologous to a part of the mammalian dorsal thalamus. The organization and origin of the diencephalic sensory relay system might have been conserved across vertebrates.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.